The transcriptional role of PML and the nuclear body (original) (raw)
Pandolfi, P. P. et al. Structure and origin of the acute promyelocytic leukaemia myl/RARalpha cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene6, 1285– 1292 (1991). CASPubMed Google Scholar
de Thé, H. et al. The PML/RARalpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukaemia encodes a functionally altered RAR. Cell66, 675–684 (1991). ArticlePubMed Google Scholar
Goddard, A. D., Borrow, P. S., Freemont, P. S. & Solomon, E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukaemia. Science254, 1371 –1374 (1991). ArticleCASPubMed Google Scholar
Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukaemia fuses RARalpha with a novel putative transcription factor, PML. Cell66, 663–674 (1991). ArticleCASPubMed Google Scholar
Melnick, A. & Licht, J. D. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukaemia. Blood93, 3167– 3215 (1999). CASPubMed Google Scholar
He, L. Z., Merghoub, T. & Pandolfi, P. P. In vivo analysis of the molecular pathogenesis of acute promyelocytic leukaemia in the mouse and its therapeutic implications . Oncogene18, 5278–5292 (1999). ArticleCASPubMed Google Scholar
Sternsdorf, T., Grotzinger, T., Jensen, K. & Will, H. Nuclear dots: actors on many stages. Immunobiology198, 307–331 (1997). ArticleCASPubMed Google Scholar
Bouteille, M., Laval, M. & Dupuy-Coin, A. M. in The Cell Nucleus (ed. Busch, H)5–64 (Academic Press, New York, 1974).
Ascoli, C. A. & Maul, G. G. Identification of a novel nuclear domain. J. Cell. Biol.112, 785– 765 (1991). ArticleCASPubMed Google Scholar
Dyck, J. et al. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell76, 333– 343 (1994). ArticleCASPubMed Google Scholar
Koken, M. H. M. et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J.13, 1073 –1083 (1994). ArticleCASPubMedPubMed Central Google Scholar
Weis, K. et al. Retinoic acid regulates aberrant nuclear localization of PML-RARalpha in acute promyelocytic leukemic cells. Cell76, 345–356 (1994). ArticleCASPubMed Google Scholar
Hodges, M., Tissot, C., Howe, K., Grimwade, D. & Freemont, P. S. Structure, organization, and dynamics of promyelocytic leukaemia protein nuclear bodies. Am. J. Hum. Genet.63, 297–304 (1998). ArticleCASPubMedPubMed Central Google Scholar
Maul, G. G. Nuclear domain 10, the site of DNA virus transcription and replication. Bioessays20, 660–667 (1998). ArticleCASPubMed Google Scholar
Koken, M. H. et al. The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene10, 1315– 1324 (1995). CASPubMed Google Scholar
LaMorte, V. J., Dyck, J. A., Ochs, R. L. & Evans, R. M. Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body . Proc. Natl Acad. Sci. USA95, 4991– 4996 (1998). ArticleCASPubMedPubMed Central Google Scholar
Alcalay, M. et al. The promyelocytic leukaemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol. Cell. Biol.18, 1084–1093 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhong, S. et al. A role for PML and the nuclear body in genomic stability. Oncogene18, 7941–7947 (1999). ArticleCASPubMed Google Scholar
Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impairs its ability to block nuclear export of MDM 2 and p53. Mol. Cell3, 579– 591 (1999). ArticleCASPubMed Google Scholar
Ishov, A. M. et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J. Cell Biol.147, 221–234 (1999). ArticleCASPubMedPubMed Central Google Scholar
Zhong, S., Muller, S., Freemont, P. S., Dejean, A. & Pandolfi, P. P. Role of SUMO-1 modified PML in nuclear body formation. Blood (in the press).
Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E. & Freemont, P. S. PIC1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene13, 971 –982 (1996). CASPubMed Google Scholar
Müller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J.17, 61–70 (1998). ArticlePubMedPubMed Central Google Scholar
Kamitani, T. et al. Identification of three major sentrinization sites in PML . J. Biol. Chem.273, 26675– 26682 (1998). ArticleCASPubMed Google Scholar
Matunis, M. J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol.140, 499–509 (1998). ArticleCASPubMedPubMed Central Google Scholar
Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem.275, 6252–6258 (2000). ArticleCASPubMed Google Scholar
Sternsdorf, T., Jensen, K. & Will, H. Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J. Cell Biol.139, 1621–1634 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sternsdorf, T., Jensen, K., Reich, B. & Will, H. The nuclear dot protein Sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J. Biol. Chem.274, 12555–12566 (1999). ArticleCASPubMed Google Scholar
Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature398, 246–251 (1999). ArticleCASPubMed Google Scholar
Gong, L., Millas, S., Maul, G. G. & Yeh, E. T. Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem.275, 3355–3359 (2000). ArticleCASPubMed Google Scholar
Freemont, P. S., Hanson, I. M. & Trowsdale, J. A novel cysteine-rich sequence motif. Cell64, 483–484 (1991). ArticleCASPubMed Google Scholar
Borden, K. L. B. & Freemont, P. S. The RING finger domain: a recent example of a sequence-structure family. Curr. Opin. Struct. Biol.6, 395–401 (1996). ArticleCASPubMed Google Scholar
Kastner, P. et al. Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukaemia (APL): structural similarities with a new family of oncoproteins . EMBO J.11, 629–642 (1992). ArticleCASPubMedPubMed Central Google Scholar
Perez, A. et al. PML/RAR homodimers: distinct DNA binding properties and heteromeric interactions with RAR. EMBO J.12, 3171– 3182 (1993). ArticleCASPubMedPubMed Central Google Scholar
Borden, K. L. B. et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J.14, 1532–1541 (1995). ArticleCASPubMedPubMed Central Google Scholar
Lavau, C. et al. The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene11, 871– 876 (1995). CASPubMed Google Scholar
Gaboli, M., Gandini, D., Delva, L., Wang, Z. G. & Pandolfi, P. P. Acute promyelocytic leukaemia as a model for cross-talk between interferon and retinoic acid pathways: from molecular biology to clinical applications. Leuk. Lymph.30, 11– 22 (1998). ArticleCAS Google Scholar
Ishov, A. M. & Maul, G. G. The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J. Cell Biol.134, 815–826 (1996). ArticleCASPubMed Google Scholar
Everett, R. G., Meredith, M. & Orr, A. The ability of herpes simplex virus type 1 immediate-early protein Vmw110 to bind to a ubiquitin-specific protease contributes to its roles in the activation of gene expression and stimulation of virus replication . J. Virol.73, 417–426 (1999). CASPubMedPubMed Central Google Scholar
Mueller, S. & Dejean, A. Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J. Virol.73,(1999).
Chelbi-Alix, M. K., Quignon, F., Pelicano, L., Koken, M. H. M. & de The, H. Resistance to virus infection conferred by the interferon-induced promyelocytic leukaemia protein. J. Virol.72, 1043–1051 (1998). CASPubMedPubMed Central Google Scholar
Everett, R. D., Orr, A. & Preston, C. M. A viral activator of gene expression functions via the ubiquitin-proteasome pathway. EMBO J.17, 7161–7169 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ahn, J. H. & Hayward, G. S. The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J. Virol.71, 4599–4613 (1997). CASPubMedPubMed Central Google Scholar
Szekely, L. et al. The Epstein-Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. J. Virol.70, 2562–2568 (1996). CASPubMedPubMed Central Google Scholar
Swindle, C. S. et al. Human papillomavirus DNA replication compartments in a transient DNA replication system. J. Virol.73, 1001 –1009 (1999). CASPubMedPubMed Central Google Scholar
Stadler, M. et al. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and GAS element. Oncogene11, 2565–2573 (1995). CASPubMed Google Scholar
Guldner, H. H., Szostecki, C., Grotzinger, T. & Will, H. IFN enhance expression of Sp100, an autoantigen in primary biliary cirrhosis . J. Immunol.149, 4067– 4073 (1992). CASPubMed Google Scholar
Gongora, C. et al. Molecular cloning of a new interferon-induced PML nuclear body-associated protein. J. Biol. Chem.272, 19457–19463 (1997). ArticleCASPubMed Google Scholar
Terris, B. et al. PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer. Res.55, 1590 –1597 (1995). CASPubMed Google Scholar
Wang, Z. G. et al. Role of PML in cell growth and the retinoic acid pathway. Science279, 1547–1551 (1998).
Zheng, P. et al. Proto-oncogene PML controls genes devoted to MHC class I antigen presentation. Nature396, 373– 376 (1998). ArticleCASPubMed Google Scholar
Larghero, J., Zassadowski, F., Rousselot, P. & Padua, R. A. Alteration of the PML proto-oncogene in leukemic cells does not abrogate expression of MHC class I antigens. Leukaemia13, 1295 –1296 (1999). ArticleCAS Google Scholar
Wang, Z.-G. et al. Pml is essential for multiple apoptotic pathways. Nature Genet.20, 266–271 (1998). ArticleCASPubMed Google Scholar
Borden, K. L., Campbell Dwyer, E. J. & Salvato, M. S. The promyelocytic leukaemia protein PML has a pro-apoptotic activity mediated through its RING domain. FEBS Lett.418, 30–34 (1997). ArticleCASPubMedPubMed Central Google Scholar
Quignon, F. et al. PML induces a novel caspase-independent death process. Nature Genet.20, 259–265 (1998). ArticleCASPubMed Google Scholar
Fagioli, M. et al. Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene16, 2905–2913 (1998). ArticleCASPubMed Google Scholar
Torii, S., Egan, D. A., Evans, R. A. & Reed, J. C. Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO J.18, 6037– 6049 (1999). ArticleCASPubMedPubMed Central Google Scholar
Mu, Z. M., Chin, K. V., Liu, J. H., Lozano, G. & Chang, K. S. PML, a growth suppressor disrupted in acute promyelocytic leukaemia. Mol. Cell. Biol.14, 6858– 6867 (1994). ArticleCASPubMedPubMed Central Google Scholar
Le, X. F., Yang, P. & Chang, K. S. Analysis of the growth and transformation suppressor domain of promyelocytic leukaemia gene, PML. J. Biol. Chem.271, 130–135 (1996). ArticleCASPubMed Google Scholar
Ellis, N. A. et al. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell83, 655– 666 (1995). ArticleCASPubMed Google Scholar
Ellis, N. A. & German, J. Molecular genetics of Bloom’s syndrome. Hum. Mol. Genet.5, 1457– 1463 (1996). ArticleCASPubMed Google Scholar
Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science266, 66– 71 (1994). ArticleCASPubMed Google Scholar
Welsch, P. L., Owens, K. N. & King, M. C. Insights into the functions of BRCA1 and BRCA 2. Trends Genet.16, 69–74 (2000). Article Google Scholar
Ahn, J. H., Brignole, E. J. r. & Hayward, G. S. Disruption of PML subnuclear domains by the acidic IE1 protein of human cytomegalovirus is mediated through interaction with PML and may modulate a RING finger-dependent cryptic transactivator function of PML. Mol. Cell. Biol.18, 4899– 4913 (1998). ArticleCASPubMedPubMed Central Google Scholar
Vallian, S. et al. Transcriptional repression by the promyelocytic leukaemia protein, PML. Exp. Cell. Res.237, 371– 382 (1997). ArticleCASPubMed Google Scholar
Rachez, C. et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature398, 824 –828 (1999). ArticleCASPubMed Google Scholar
Naar, A. M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature398, 828– 832 (1999). ArticleCASPubMed Google Scholar
Fondell, J. D., Ge, H. & Roeder, R. G. Ligand induction of a transcriptionally active thyroid hormone receptor co-activator complex. Proc. Natl Acad. Sci. USA93, 8329–8333 (1996). ArticleCASPubMedPubMed Central Google Scholar
Zhong, S. et al. A retinoic acid-dependent tumour-growth suppressive transcription complex is the target of the PML-RARα and T 18 oncoproteins. Nat. Genet.23, 287–295 (1999). ArticleCASPubMed Google Scholar
Doucas, V., Tini, M., Egan, D. A. & Evans, R. M. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc. Natl Acad. Sci. USA96, 2627–2632 (1999). ArticleCASPubMedPubMed Central Google Scholar
Guiochon-Mantel, A. et al. Effect of PML and PML-RAR on the transactivation properties and subcellular distribution of steroid hormone receptors. Mol. Endocrinol.9, 1791–1803 (1995). CASPubMed Google Scholar
Vallian, S. et al. Modulation of Fos-mediated AP-1 transcription by the promyelocytic leukaemia protein. Oncogene16, 2843– 2853 (1998). ArticleCASPubMed Google Scholar
Vallian, S., Chin, K. V. & Chang, K. S. The promyelocytic leukaemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol. Cell. Biol.18, 7147– 7156 (1998). ArticleCASPubMedPubMed Central Google Scholar
Doucas, V. & Evans, R. M. Human T-cell leukaemia retrovirus-Tax protein is a repressor of nuclear receptor signaling. Proc. Natl Acad. Sci. USA96, 2633–2638 (1999). ArticleCASPubMedPubMed Central Google Scholar
Jiang, W. Q., Szekely, L., Klein, G. & Ringertz, N. Intranuclear redistribution of SV 40T, p53, and PML in a conditionally SV 40T-immortalized cell line. Exp. Cell Res.229, 289– 300 (1996). ArticleCASPubMed Google Scholar
Lain, S., Midgley, C., Sparks, A., Lane, E. B. & Lane, D. P. An inhibitor of nuclear export activates the p53 response and induces the localization of HDM 2 and p53 to U 1A–positive nuclear bodies associated with the PODs. Exp. Cell Res.248 , 457–472 (1999). ArticleCASPubMed Google Scholar
Chakravati, D. et al. Role of CBP/P300 in nuclear receptor signalling. Nature383, 99–103 (1996). Article Google Scholar
Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature384, 641–643 (1996). ArticleCASPubMed Google Scholar
Boyes, J., Byfield, P., Nakatani, Y. & Ogryzko, V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature396(1998).
Blobel, G. A., Nakajima, T., Eckner, R., Montminy, M. & Orkin, S. H. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc. Natl Acad. Sci. USA95, 2061–2066 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhang, W. & Bieker, J. J. Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc. Natl Acad. Sci. USA95, 9855–9860 (1998). ArticleCASPubMedPubMed Central Google Scholar
Remboutsika, E. et al. The putative nuclear receptor mediator TIF1alpha is tightly associated with euchromatin. J. Cell Sci.112, 1671–1683 (1999). CASPubMed Google Scholar
Johnson, F. B. & al., e. Association of the Bloom Syndrome protein with Topoisomerase IIIalpha in somatic and meiotic cells. Cancer Res. (in the press).
Lai, H.-K. & Borden, K. L. B. The promyelocytic leukaemia (PML) protein suppresses cyclin D 1 protein production by altering the nuclear cytoplasmic distribution of cyclin D 1 mRNA. Oncogene (in the press).
Asano, K., Merrick, W. C. & Hershey, J. W. The translation initiation factor eIF 3-p 48 subunit is encoded by int-6, a site of frequent integration by the mouse mammary tumour virus genome. J. Biol. Chem.272, 23477– 23480 (1997). ArticleCASPubMed Google Scholar
Everett, R. D. et al. A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein . EMBO J.16, 1519–1530 (1997). ArticleCASPubMedPubMed Central Google Scholar
Seeler, J.S., Marchio, A., Sitterling, D., Transy, C. & Dejean, A. Interaction of Sp100 with HP 1 proteins: a link between the promyelocytic leukaemia-associated nuclear bodies and the chromatin compartment. Proc. Natl Acad. Sci. USA95 , 7316–7321 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bloch, D. B., de la Monte, S. M., Guigaouri, P., Filippov, A. & Bloch, K. D. Identification and characterization of a leukocyte-specific component of the nuclear body. J. Biol. Chem.271, 29198–29204 (1996). ArticleCASPubMed Google Scholar
Boisvert, F. M., Hendzel, M. J. & Bazett-Jones, D. P. Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J. Cell Biol.148, 283–292 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lehming, N., Le Saux, A., Schuller, J. & Ptashne, M. Chromatin components as part of a putative transcriptional repressing complex . Proc. Natl Acad. Sci. USA95, 7322– 7326 (1998). ArticleCASPubMedPubMed Central Google Scholar