A glia-derived acetylcholine-binding protein that modulates synaptic transmission (original) (raw)

References

  1. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapses: glia the unacknowledged partner. Trends Neurosci. 22, 208– 215 (1999).
    Article CAS PubMed Google Scholar
  2. Smith, S. J. Do astrocytes process neural information? Prog. Brain Res. 94, 119– 136 (1992).
    Article ADS CAS PubMed Google Scholar
  3. Dani, J. W., Chernjavsky, A. & Smith, S. J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8, 429– 440 (1992).
    Article CAS PubMed Google Scholar
  4. Pasti, L., Pozzan, T. & Carmignoto, G. Long-lasting changes of calcium oscillations in astrocytes. A new form of glutamate-mediated plasticity. J. Biol. Chem. 25, 15203– 15210 (1995).
    Article Google Scholar
  5. Parpura, V. et al. Glutamate-mediated astrocyte–neuron signaling. Nature 369, 744– 747 (1994).
    Article ADS CAS PubMed Google Scholar
  6. Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768– 1771 (1994).
    Article ADS CAS PubMed Google Scholar
  7. Murphy, T. H., Blatter, L. A., Wier, W. G. & Baraban, J. M. Rapid communication between neurons and astrocytes in primary cortical cultures. J. Neurosci. 13, 2672– 2679 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  8. Newman, E. A. & Zahs, K. R. Modulation of neuronal activity by glial cells in the retina. J. Neurosci. 18, 4022– 4028 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  9. Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817– 7830 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  10. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470– 473 (1990).
    Article ADS CAS PubMed Google Scholar
  11. Calegari, F. et al. A regulated secretory pathway in cultured hippocampal astrocytes. J. Biol. Chem. 274, 22539– 22547 (1999).
    Article CAS PubMed Google Scholar
  12. Porter, J. T. & McCarthy, K. D. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16, 5073– 5081 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  13. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10, 2129– 2141 (1998).
    Article CAS PubMed Google Scholar
  14. Araque, A., Sanzgiri, R. P., Parpura, V. & Haydon, P. G. Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci. 18, 6822– 6829 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  15. Kang, J., Jiang, L., Goldman, S. A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neurosci. 1, 683– 692 (1998).
    Article CAS PubMed Google Scholar
  16. Jahromi, B. S., Robitaille, R. & Charlton, M. P. Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ. Neuron 8, 1069– 1077 (1992).
    Article CAS PubMed Google Scholar
  17. Robitaille, R., Jahromi, B. S. & Charlton, M. P. Muscarinic Ca responses resistant to muscarinic agonists at the perisynaptic Schwann cells at the frog neuromuscular junction. J. Physiol. 504, 337– 347 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  18. Robitaille, R. Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron 21, 847– 855 (1998).
    Article MathSciNet CAS PubMed Google Scholar
  19. Theodosis, D. T. & Poulain, D. A. Activity-dependent neuronal glial and synaptic plasticity in the adult mammalian hypothalamus. Neurosci. 57, 501– 535 (1993).
    Article CAS Google Scholar
  20. Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269– 276 (2001).
    Article ADS CAS PubMed Google Scholar
  21. Feng, Z. P., Klumperman, J., Lukowiak, K. & Syed, N. I. In vitro synaptogenesis between the somata of identified Lymnaea neurons requires protein synthesis but not extrinsic growth factors or substrate adhesion molecules. J. Neurosci. 17, 7839– 7849 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  22. Hamakawa, T. et al. Excitatory synaptogenesis between identified Lymnaea neurons requires extrinsic trophic factors and is mediated by receptor tyrosine kinases. J. Neurosci. 19, 9306– 9312 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  23. Woodin, M. A., Hamakawa, T., Takasaki, M., Lukowiak, K. & Syed, N. I. Trophic factor-induced plasticity of synaptic connections between identified Lymnaea neurons. Learn. Mem. 6, 307– 316 (1999).
    CAS PubMed PubMed Central Google Scholar
  24. Orr-Urteger, A. et al. Mice deficient in the alpha7 neuronal nicotinic acetylcholine receptor lack alpha bungarotoxin binding sites and hippocampal fast nicotinic currents. J. Neurosci. 17, 9165– 9171 (1997).
    Article Google Scholar
  25. Gardner, D. & Kandel, E. R. Interconnections of identified multiaction interneurons in buccal ganglia of aplysia. J. Neurophys. 40, 349– 361 (1977).
    Article CAS Google Scholar
  26. Yeoman, M. S., Parish, D. C. & Benjamin, P. R. A cholinergic modulatory interneuron in the feeding system of the snail, Lymnaea. J. Neurosci. 70, 37– 50 (1993).
    CAS Google Scholar
  27. Le Novere, N. & Changeux, J. P. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J. Mol. Evol. 40, 155– 172 (1995).
    Article ADS CAS PubMed Google Scholar
  28. Devillers-Thiery, A., Galzi, J. L., Eiselé, J. L., Bertrand, S. & Changeux, J. P. Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J. Membrane Biol. 136, 97– 112 (1993).
    Article CAS Google Scholar
  29. Karlin, A. & Akabas, M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 6, 1231– 1244 (1995).
    Article Google Scholar
  30. Mehta, A. K. & Ticku, M. K. An update on GABAA receptors. Brain Res. Rev. 2–3, 196– 217 (1999).
    Article Google Scholar
  31. Betz, H. et al. Structure and functions of inhibitory and excitatory glycine receptors. Annu. NY Acad. Sci. 868, 667– 676 (1999).
    Article ADS CAS Google Scholar
  32. Corringer, P. J., Le Novere, N. & Changeux, J. P. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40, 431– 458 (2000).
    Article CAS PubMed Google Scholar
  33. Drisdel, R. C. & Green, W. N. Neuronal α-Bungarotoxin receptors are α7 subunit homomers. J. Neurosci. 20, 133– 139 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  34. Green, W. N. Channel assembly: creating structures that function. J. Gen. Physiol. 113, 163– 169 (1999).
    Article ADS CAS PubMed PubMed Central Google Scholar
  35. Verall, S. & Hall, Z. W. The N-terminal domain of the acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly. Cell 68, 23– 31 (1992).
    Article Google Scholar
  36. Wang, Z. Z., Hardy, S. F. & Hall, Z. W. Assembly of the nicotinic acetylcholine receptor. The first transmembrane domains of truncated alpha and delta subunits are required for heterodimer formation in vivo. J. Biol. Chem. 271, 27575– 27584 (1996).
    Article CAS PubMed Google Scholar
  37. Wells, G. B., Anand, R., Wang, F. & Lindstrom, J. Water-soluble nicotinic acetylcholine receptor formed by alpha7 subunit extracellular domains. J. Biol. Chem. 273, 964– 973 (1998).
    Article CAS PubMed Google Scholar
  38. Corringer, P. J. et al. Critical elements determining diversity in the agonist binding and desensitization of neuronal nicotinic acetylcholine receptors. J. Neurosci. 18, 648– 657 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  39. Badio, B. & Daly, J. W. Epibatidine, a potent analgetic and nicotinic agonist. Mol. Pharmacol. 45, 563– 569 (1994).
    CAS PubMed Google Scholar
  40. Groebe, D. R. & Abramson, S. N. Lophotoxin is a slow binding irreversible inhibitor of nicotinic acetylcholine receptors. J. Biol. Chem. 270, 281– 286 (1995).
    Article PubMed Google Scholar
  41. Edelstein, S. J. & Bardsley, W. G. Contributions of individual molecular species to the Hill coefficient for ligand binding by an oligomeric protein. J. Mol. Biol. 267, 10– 16 (1997).
    Article CAS PubMed Google Scholar
  42. Zwart, R. & Vijverberg, H. P. Potentiation and inhibition of neuronal nicotinic receptors by atropine: competitive and noncompetitive effects. Mol. Pharmacol. 52, 886– 895 (1997).
    Article CAS PubMed Google Scholar
  43. Verbitsky, M., Rothlin, C. V., Katz, E. & Belen Elgoyhen, A. Mixed nicotinic–muscarinic properties of the alpha9 nicotinic cholinergic receptor. Neuropharmacology 39, 2515– 2524 (2000).
    Article CAS PubMed Google Scholar
  44. Whatey, J. C., Nass, M. M. & Lester, H. A. Numerical reconstruction of the quantal event at nicotinic synapses. Biophys. J. 27, 145– 164 (1979).
    Article Google Scholar
  45. Land, B. R., Salpeter, E. E. & Salpeter, M. M. Kinetic parameters for acetylcholine interaction in intact neuromuscular junction. Proc. Natl Acad. Sci. USA 78, 7200– 7204 (1981).
    Article ADS CAS PubMed PubMed Central Google Scholar
  46. Katz, B. & Miledi, R. The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol. 231, 549– 574 (1973).
    Article CAS PubMed PubMed Central Google Scholar
  47. Kuffler, S. W. & Yoshikama, D. The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J. Physiol. 1, 465– 482 (1975).
    Article Google Scholar
  48. Syed, N. I., Bulloch, A. G. & Lukowiak, K. In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea. Science 250, 282– 285 (1990).
    Article ADS CAS PubMed Google Scholar
  49. Van Minnen, J., Van De Haar, C., Raap, A. K. & Vreugdenhil, E. Localization of ovulation hormone-like neuropeptide in the central nervous system of the snail Lymnaea stagnalis by means of immunocytochemistry and in situ hybridization. Cell Tissue Res. 251, 477– 484 (1988).
    Article CAS PubMed Google Scholar
  50. Slot, J. W., Geuze, H. J. & Weerkamp, A. J. Localization of macromolecular components by application of the immunogold technique on cryosectioned bacteria. Methods Microbiol. 20, 211– 236 (1988).
    Article Google Scholar

Download references