Genome maintenance mechanisms for preventing cancer (original) (raw)
Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res.51, 3075–3079 (1991). CASPubMed Google Scholar
Cadet, J., Berger, M., Douki, T. & Ravanat, J. L. Oxidative damage to DNA: formation, measurement, and biological significance. Rev. Physiol. Biochem. Pharmacol.131, 1–87 (1997). CASPubMed Google Scholar
Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature408, 239–247 (2000). ArticleADSCASPubMed Google Scholar
Yamaizumi, M. & Sugano, T. UV-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene9, 2775–2784 (1994). CASPubMed Google Scholar
Goodman, M. F. & Tippin, B. Sloppier copier DNA polymerases involved in genome repair. Curr. Opin. Genet. Dev.10, 162–168 (2000). ArticleCASPubMed Google Scholar
Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem.69, 497–529 (2000). ArticleCASPubMed Google Scholar
Lawrence, C. The Rad6 DNA repair pathway in Saccharomyces cerevisiae: what does it do and how does it do it? BioEssays16, 253–258 (1994). ArticleCASPubMed Google Scholar
Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature399, 700–704 (1999). ArticleADSCASPubMed Google Scholar
Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science285, 263–265 (1999). ArticleCASPubMed Google Scholar
Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature408, 433–439 (2000). ArticleADSCASPubMed Google Scholar
Friedberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis (ASM Press, Washington DC, 1995). Google Scholar
Takata, M. et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J.17, 5497–5508 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tornaletti, S. & Hanawalt, P. C. Effect of DNA lesions on transcription elongation. Biochimie81, 139–148 (1999). ArticleCASPubMed Google Scholar
de Laat, W. L., Jaspers, N. G. & Hoeijmakers, J. H. Molecular mechanism of nucleotide excision repair. Genes Dev.13, 768–785 (1999). ArticleCASPubMed Google Scholar
Batty, D. P. & Wood, R. D. Damage recognition in nucleotide excision repair of DNA. Gene241, 193–204 (2000). ArticleCASPubMed Google Scholar
Bootsma, D., Kraemer, K. H., Cleaver, J. & Hoeijmakers, J. H. J. in The Metabolic and Molecular Basis of Inherited Disease Vol. 1 (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 677–703 (McGraw-Hill, New York, 2001). Google Scholar
Lehmann, A. R. The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev.15, 15–23 (2001). ArticleCASPubMed Google Scholar
Vermeulen, W. et al. A temperature-sensitive disorder in basal transcription and DNA repair in humans. Nature Genet.27, 299–303 (2001). ArticleCASPubMed Google Scholar
de Boer, J. & Hoeijmakers, J. H. Cancer from the outside, aging from the inside: mouse models to study the consequences of defective nucleotide excision repair. Biochimie81, 127–137 (1999). ArticleCASPubMed Google Scholar
Wyatt, M. D., Allan, J. M., Lau, A. Y., Ellenberger, T. E. & Samson, L. D. 3-methyladenine DNA glycosylases: structure, function, and biological importance. BioEssays21, 668–676 (1999). ArticleCASPubMed Google Scholar
Mol, C. D., Parikh, S. S., Putnam, C. D., Lo, T. P. & Tainer, J. A. DNA repair mechanisms for the recognition and removal of damaged DNA bases. Annu. Rev. Biophys. Biomol. Struct.28, 101–128 (1999). ArticleCASPubMed Google Scholar
Bruner, S. D., Norman, D. P. & Verdine, G. L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature403, 859–866 (2000). ArticleADSCASPubMed Google Scholar
Divine, K. K. et al. The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung. Mutat. Res.461, 273–278 (2001). ArticleCASPubMed Google Scholar
Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet.27, 247–254 (2001). ArticleCASPubMed Google Scholar
Paull, T. T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol.10, 886–895 (2000). ArticleCASPubMed Google Scholar
Petrini, J. H. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol.12, 293–296 (2000). ArticleCASPubMed Google Scholar
Digweed, M., Reis, A. & Sperling, K. Nijmegen breakage syndrome: consequences of defective DNA double strand break repair. BioEssays21, 649–656 (1999). ArticleCASPubMed Google Scholar
Riballo, E. et al. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr. Biol.9, 699–702 (1999). ArticleCASPubMed Google Scholar
Van Gent, D. C., Hoeijmakers, J. H. J. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nature Rev. Genet.2, 196–206 (2001). ArticleCASPubMed Google Scholar
Gurley, K. E. & Kemp, C. J. Synthetic lethality between mutation in Atm and DNA-PKcs during murine embryogenesis. Curr. Biol.11, 191–194 (2001). ArticleCASPubMed Google Scholar
Moynahan, M. E., Pierce, A. J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell7, 263–272 (2001). ArticleCASPubMed Google Scholar
Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature404, 897–900 (2000). ArticleADSCASPubMed Google Scholar
Jiricny, J. & Nystrom-Lahti, M. Mismatch repair defects in cancer. Curr. Opin. Genet. Dev.10, 157–161 (2000). ArticleCASPubMed Google Scholar
Heyer, J., Yang, K., Lipkin, M., Edelmann, W. & Kucherlapati, R. Mouse models for colorectal cancer. Oncogene18, 5325–5333 (1999). ArticleCASPubMed Google Scholar
McEachern, M. J., Krauskopf, A. & Blackburn, E. H. Telomeres and their control. Annu. Rev. Genet.34, 331–358 (2000). ArticleCASPubMed Google Scholar
Shay, J. W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer33, 787–791 (1997). ArticleCASPubMed Google Scholar
Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J.11, 1921–1929 (1992). ArticleCASPubMedPubMed Central Google Scholar
Tang, R., Cheng, A. J., Wang, J. Y. & Wang, T. C. Close correlation between telomerase expression and adenomatous polyp progression in multistep colorectal carcinogenesis. Cancer Res.58, 4052–4054 (1998). CASPubMed Google Scholar
Gonzalez-Suarez, E., Samper, E., Flores, J. M. & Blasco, M. A. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nature Genet.26, 114–117 (2000). ArticleCASPubMed Google Scholar
de Lange, T. & Jacks, T. For better or worse? Telomerase inhibition and cancer. Cell98, 273–275 (1999). ArticleCASPubMed Google Scholar
Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med.3, 1271–1274 (1997). ArticleCASPubMed Google Scholar
Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell96, 701–712 (1999). ArticleCASPubMed Google Scholar
Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age. Nature Genet.21, 163–167 (1999). ArticleCASPubMed Google Scholar
Sugasawa, K. et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev.15, 507–521 (2001). ArticleCASPubMedPubMed Central Google Scholar
Tang, J. Y., Hwang, B. J., Ford, J. M., Hanawalt, P. C. & Chu, G. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol. Cell5, 737–744 (2000). ArticleCASPubMedPubMed Central Google Scholar
Le Page, F. et al. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell101, 159–171 (2000). ArticleCASPubMed Google Scholar
Buschta-Hedayat, N., Buterin, T., Hess, M. T., Missura, M. & Naegeli, H. Recognition of nonhybridizing base pairs during nucleotide excision repair of DNA. Proc. Natl Acad. Sci. USA96, 6090–6095 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell2, 223–232 (1998). ArticleCASPubMed Google Scholar
Houtsmuller, A. B. et al. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science284, 958–961 (1999). ArticleADSCASPubMed Google Scholar
Whitehouse, C. J. et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell104, 107–117 (2001). ArticleCASPubMed Google Scholar
Haber, J. E. Partners and pathways repairing a double-strand break. Trends Genet.16, 259–264 (2000). ArticleCASPubMed Google Scholar
Davies, A. A. et al. Role of BRCA2 in control of RAD51 recombination and DNA repair protein. Mol. Cell7, 273–282 (2001). ArticleCASPubMed Google Scholar
Kolodner, R. D. & Marsischky, G. T. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev.9, 89–96 (1999). ArticleCASPubMed Google Scholar
Harfe, B. D. & Jinks-Robertson, S. DNA mismatch repair and genetic instability. Annu. Rev. Genet.34, 359–399 (2000). ArticleCASPubMed Google Scholar
Obmolova, G., Ban, C., Hsieh, P. & Yang, W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature407, 703–710 (2000). ArticleADSCASPubMed Google Scholar
Lamers, M. H. et al. The crystal structure of DNA mismatch repair protein MutS binding to a G·T mismatch. Nature407, 711–717 (2000). ArticleADSCASPubMed Google Scholar
Karran, P. & Bignami, M. DNA damage tolerance, mismatch repair and genome instability. BioEssays16, 833–839 (1994). ArticleCASPubMed Google Scholar