Progress in human tumour immunology and immunotherapy (original) (raw)
Hewitt, H. B., Blake, E. R. & Walder, A. S. A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin. Br. J. Cancer33, 241(1976). ArticleCASPubMedPubMed Central Google Scholar
Woglom, W. H. Immunity to transplantable tumors. Cancer Res.4, 129(1929). Google Scholar
Rosenberg, S. A. (ed.) Principles and Practice of the Biologic Therapy of Cancer (Lippincott, Philadelphia, 2000). Google Scholar
Rosenberg, S. A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med.313, 1485–1492 (1985). ArticleCASPubMed Google Scholar
Rosenberg, S. A., Yang, J. C., White, D. E. & Steinberg, S. M. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2. Ann. Surg.228, 307–319 (1998). ArticleCASPubMedPubMed Central Google Scholar
Fyfe, G. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high dose proleukin interleukin-2 therapy. J. Clin. Oncol.13, 688–696 (1995). ArticleCASPubMed Google Scholar
Atkins, M. B. et al. High-dose recombinant interleukin-2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol.17, 2105–2116 (1999). ArticleCASPubMed Google Scholar
Rosenberg, S. A. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity10, 281–287 (1999). ArticleCASPubMed Google Scholar
Boon, T., Coulie, P. G. & Van den Eynde B. Tumor antigens recognized by T cells. Immunol. Today18, 267–268 (1997). ArticleCASPubMed Google Scholar
Hunt, D. F. et al. Characterization of peptides bound to the Class I MHC molecule HLA-A2.1 by mass spectrometry. Science255, 1261–1263 (1992). ArticleADSCASPubMed Google Scholar
Cox, A. L. et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science264, 716–719 (1994). ArticleADSCASPubMed Google Scholar
Kawashima, I., Hudson, S. J. & Tsai, V. The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum. Immunol.59, 1–14 (1989). Article Google Scholar
Chen, Y. T., Scanlan, M. J. & Sahin, U. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc. Natl Acad. Sci. USA94, 1914–1918 (1997). ArticleADSCASPubMedPubMed Central Google Scholar
Wang, R. -F., Wang, X., Atwood, A. L., Topalian, S. L. & Rosenberg, S. A. Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. Science284, 1351–1354 (1999). ArticleADSCASPubMed Google Scholar
Lowy, D. R. & Schiller, J. T. in Cancer Principles & Practice of Oncology 6th edn (eds DeVita, V. T., Hellman, S. & Rosenberg, S. A.) 3189–3195 (Lippincott, Philadelphia, 2001). Google Scholar
Stoler, D. L. et al. The onset and extend of genomic instability in sporadic colorectal tumor progression. Proc. Natl Acad. Sci. USA26, 15121–15126 (1999). ArticleADS Google Scholar
Landsteiner, K. & Chase, M. W. Experiments on transfer of cutaneous sensitivity to simple compounds. Proc. Soc. Exp. Biol. Med.49, 688 (1942).
Klein, E. & Sjogren, H. O. Humoral and cellular factors in homograft and isograft immunity. Cancer Res.20, 452 (1960).
Old, L. J., Boyse, E. A. & Clarke, D. A. Antigenic properties of chemically induced tumors. Ann. NY Acad. Sci.101, 80 (1962). ArticleADSCAS Google Scholar
Rosenberg, S. A. et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine activated killer cells and interleukin-2 or high dose interleukin-2 alone. N. Engl. J. Med.316, 889–897 (1987). ArticleCASPubMed Google Scholar
Muul, L. M., Spiess, P. J., Director, E. P. & Rosenberg, S. A. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J. Immunol.138, 989–995 (1987). CASPubMed Google Scholar
Itoh, K., Platsoucas, D. C. & Balch, C. M. Autologous tumor-specific cytotoxic T lymphocytes in the infiltrate of human metastatic melanomas: activation by interleukin 2 and autologous tumor cells and involvement of the T cell receptor. J. Exp. Med.168, 1419–1441 (1988). ArticleCASPubMed Google Scholar
Rosenberg, S. A. et al. Use of tumor infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. Preliminary report. N. Engl. J. Med.319, 1676–1680 (1988). ArticleCASPubMed Google Scholar
Rosenberg, S. A. et al. Treatment of patients with metastatic melanoma using autologous tumor-infiltrating lymphocytes and interleukin-2. J. Natl Cancer Inst.86, 1159–1166 (1994). ArticleCASPubMed Google Scholar
Papadopoulos, E. B. et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N. Engl. J. Med.17, 1185–1191 (1994). Article Google Scholar
Rosenberg, S. A. et al. Immunologic and therapeutic evaluation of a synthetic tumor associated peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med.4, 321–327 (1998). ArticleCASPubMed Google Scholar
Walter, E. A. et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med.333, 1038–1044 (1995). ArticleCASPubMed Google Scholar
Yee, C., Gilbert, M. J. & Riddell, S. R. Isolation of tyrosinase-specific CD8+ and CD4+ T cell clones from the peripheral blood of melanoma patients following in vitro stimulation with recombinant vaccinia virus. J. Immunol.157, 4079–4086 (1996). CASPubMed Google Scholar
Dudley, M. E., Ngo, L. T., Westwood, J., Wunderlich, J. R. & Rosenberg, S. A. T cell clones from melanoma patients immunized against an anchor-modified gp100 peptide display discordant effector phenotypes. Cancer J. Sci. Am.6, 69–77 (2000). CAS Google Scholar
Rosenberg, S. A. Gene therapy for cancer. J. Am. Med. Assoc.268, 2416–2419 (1992). ArticleCAS Google Scholar
Rosenberg, S. A. et al. Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J. Natl Cancer. Inst.90, 1894–1900 (1998). ArticleCASPubMed Google Scholar
Marshall, J. L. et al. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J. Clin. Oncol.23, 3963–3973 (2000). Google Scholar
Eder, J. P. et al. A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin. Cancer Res.5, 1632–1638 (2000). Google Scholar
Marshall, J. L. et al. Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J. Clin. Oncol.17, 332–337 (1999). ArticleCASPubMed Google Scholar
Restifo, N. P., Ying, H., Hwang, L. & Leitner, W. W. The promise of nucleic acid vaccines. Gene Ther.2, 89–92 (2000). ArticleCAS Google Scholar
Wang, R. et al. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science282, 476–480 (1998). ArticleADSCASPubMed Google Scholar
Dallal, R. M., Mailliard, R. & Lotze, M. T. in Principles and Practice of the Biologic Therapy of Cancer 3rd edn (ed. Rosenberg, S. A.) 705–721 (Lippincott, Philadelphia, 2000). Google Scholar
Gong, J. et al. Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J. Immunol.3, 1705–1711 (2000). Article Google Scholar
Parkhurst, M. R. et al. Improved induction of melanoma reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A* 0210 binding residues. J. Immunol.157, 2539–2548 (1996). CASPubMed Google Scholar
Rosenberg, S. A. et al. Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine. J. Immunol.163, 1690–1695 (1999). CASPubMed Google Scholar
Marincola, F. M. in Principles and Practice of the Biologic Therapy of Cancer 3rd edn (ed. Rosenberg, S. A.) 601–617 (Lippincott, Philadelphia, 2000). Google Scholar
Kawakami, Y. et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl Acad. Sci. USA91, 3515–3519 (1994). ArticleADSCASPubMedPubMed Central Google Scholar
Kawakami, Y. et al. Identification of a human melanoma antigen recognized by tumor infiltrating lymphocytes associated with in vivo tumor rejection. Proc. Natl Acad. Sci. USA91, 6458–6462 (1994). ArticleADSCASPubMedPubMed Central Google Scholar
Brichard, V. et al. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med.178, 489–495 (1993). ArticleCASPubMed Google Scholar
Wang, R. F., Robbins, P. F., Kawakami, Y., Kang, X. Q. & Rosenberg, S. A. Identification of a gene encoding a melanoma tumor antigen recognized by HLA-A31-restricted tumor-infiltrating lymphocytes. J. Exp. Med.181, 799–804 (1995). ArticleCASPubMed Google Scholar
Wang, R. -F., Appella, E., Kawakami, Y., Kang, X. & Rosenberg, S. A. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J. Exp. Med.184, 2207–2216 (1996). ArticleCASPubMedPubMed Central Google Scholar
Salazar-Onfray, F. et al. Synthetic peptides derived from the melanocyte-stimulating hormone receptor MC1R can stimulate HLA-A2-restricted cytotoxic T lymphocytes that recognize naturally processed peptides on human melanoma cells. Cancer Res.57, 4348–4355 (1997). CASPubMed Google Scholar
Van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science254, 1643–1647 (1991). ArticleADSCASPubMed Google Scholar
Visseren, M. J. et al. Identification of HLA-A*0201-restricted CTL epitopes encoded by the tumor-specific MAGE-2 gene product. Int. J. Cancer73, 125–130 (1997). ArticleCASPubMed Google Scholar
Gaugler, B. et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J. Exp. Med.179, 921–930 (1994). ArticleCASPubMed Google Scholar
Panelli, M. C. et al. A tumor-infiltrating lymphocyte from a melanoma metastasis with decreased expression of melanoma differentiation antigens recognizes MAGE-12. J. Immunol. 4382–4392 (2000).
Boel, P. et al. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity2, 167–175 (1995). ArticleCASPubMed Google Scholar
Van Den Eynde, B. et al. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J. Exp. Med.182, 689–698 (1995). ArticleCASPubMed Google Scholar
Jager, E., Chen, Y. T. & Drijfhout, J. W. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J. Exp. Med.187, 265–270 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wang, R. -F. et al. A breast and melanoma-shared tumor antigenic peptides translated from different open reading frames. J. Immunol.161, 3596–3606 (1998). CAS Google Scholar
Robbins, P. F. et al. A mutated B-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J. Exp. Med.183, 1185–1192 (1996). ArticleCASPubMed Google Scholar
Chiari, R. et al. Two antigens recognized by autologous cytolytic T lymphocytes on a melanoma result from a single point mutation in an essential housekeeping gene. Cancer Res.22, 5785–5792 (1999). Google Scholar
Wolfel, T. et al. A p16INK4A-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science269, 1281–1284 (1995). ArticleADSCASPubMed Google Scholar
Mandruzzato, S., Brasseur, F. & Andry, G. A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J. Exp. Med.186, 785–793 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gueguen, M., Matard, J. J. & Gaugler, B. An antigen recognized by autologous CTLs on a human bladder carcinoma. J. Immunol.160, 6188–6194 (1998). CASPubMed Google Scholar
Brandle, D., Brasseur, F. & Weynants, P. A mutated HLA-A2 molecule recognized by autologous cytotoxic T lymphocytes on a human renal cell carcinoma. J. Exp. Med.183, 2501–2508 (1996). ArticleCASPubMed Google Scholar
Butterfield, L. H. et al. Generation of human T-cell responses to an HLA-A2.1-restricted peptide epitope derived from alpha-fetoprotein. Cancer Res.59, 3134–3142 (1999). CASPubMed Google Scholar
Vonderheide, R. H., Hahn, W. C., Schultze, J. L. & Nadler, L. M. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity10, 673–679 (1999). ArticleCASPubMed Google Scholar
Vissers, J. L. et al. The renal cell carcinoma-associated antigen G250 encodes a human leukocyte antigen (HLA)-A2.1-restricted epitope recognized by cytotoxic T lymphocytes. Cancer Res.59, 5554–5559 (1999). CASPubMed Google Scholar
Jerome, K. R. et al. Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res.51, 2908–2916 (1991). CASPubMed Google Scholar
Tsang, K. Y., Zaremba, S. & Nieroda, C. A. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J. Natl Cancer Inst.87, 982–990 (1995). ArticleCASPubMed Google Scholar
Theobald, M. B. J., Dittmer, D., Levine, A. J. & Sherman, L. A. Targeting p53 as a general tumor antigen. Proc. Natl Acad. Sci. USA92, 11993–11997 (1995). ArticleADSCASPubMedPubMed Central Google Scholar
Ioannides, C. G. et al. T cells isolated from ovarian malignant ascites recognize a peptide derived from the HER-2/neu proto-oncogene. Cell Immunol.151, 225–234 (1993). ArticlePubMed Google Scholar
Li, K. et al. Tumour-specific MHC-class-II-restricted responses after in vitro sensitization to synthetic peptides corresponding to gp100 and annexin II eluted from melanoma cells. Cancer Immunol. Immunother.47, 32–38 (1998). ArticleCASPubMed Google Scholar
Chaux, P. et al. Identification of MAGE-3, epitopes presented by HLA-DR molecules to CD4+ T lymphocytes. J. Exp. Med.189, 767–777 (1999). ArticleCASPubMedPubMed Central Google Scholar
Topalian, S. L. et al. Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc. Natl Acad. Sci. USA91, 9461–9465 (1994). ArticleADSCASPubMedPubMed Central Google Scholar
Zeng, G. et al. Identification of CD4+ T cell epitopes from NY-ESO-1 presented by HLA-DR molecules. J. Immunol.165, 1153–1159 (2000). ArticleCASPubMed Google Scholar
Pieper, R. et al. Biochemical identification of a mutated human melanoma antigen recognized by CD4+ T cells. J. Exp. Med.189, 757–766 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wang, R. -F., Wang, X. & Rosenberg, S. A. Identification of a novel major histocompatibility complex class II-restricted tumor antigen resulting from a chromosomal rearrangement recognized by CD4+ T cells. J. Exp. Med.189, 1659–1667 (1999). ArticleCASPubMedPubMed Central Google Scholar