Retinoblastoma protein represses transcription by recruiting a histone deacetylase (original) (raw)

References

  1. Weinberg, R. A. The retinoblastoma gene and gene product. Cancer Surv. 12, 43–57 (1992).
    CAS PubMed Google Scholar
  2. Nevins, J. R. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258, 424–429 (1992).
    Article ADS CAS Google Scholar
  3. Helin, K. et al. AcDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70, 337–350 (1992).
    Article CAS Google Scholar
  4. Flemington, E. K., Speck, S. H. & Kaelin, W. G. J E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibiity gene product. Proc. Natl Acad. Sci. USA 90, 6914–6918 (1993).
    Article ADS CAS Google Scholar
  5. Weintraub, S. J., Prater, C. A. & Dean, D. C. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358, 259–261 (1992).
    Article ADS CAS Google Scholar
  6. Bremner, R. et al. Direct transcriptional repression by pRB and its reversal by specific cyclins. Mol. Cell. Biol. 1555, 3256–3265 (1995).
    Article Google Scholar
  7. Zacksenhaus, E., Jiang, Z., Phillips, R. A. & Gallie, B. L. Dual mechanisms of repression of E2F1 activity by the retinoblastoma gene product. EMBO J. 15, 5917–5927 (1996).
    Article CAS Google Scholar
  8. Chow, K. N., Starostik, P. & Dean, D. C. The Rb family contains a conserved cyclin-dependent-kinase-regulated transcriptional repressor motif. Mol. Cell. Biol. 16, 7173–7181 (1996).
    Article CAS Google Scholar
  9. Weinberg, R. A. E2F and cell proliferation: a world turned upside down. Cell 85, 457–459 (1996).
    Article CAS Google Scholar
  10. Turner, B. M. Histone acetylation and control of gene expression. J. Cell Sci. 99, 13–20 (1991).
    CAS PubMed Google Scholar
  11. Pazin, M. J. & Kadonaga, J. T. What's up and down with histone deacetylation and transcription? Cell 89, 325–328 (1997).
    Article CAS Google Scholar
  12. Yoshida, M., Kijima, M., Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174–17179 (1990).
    CAS PubMed Google Scholar
  13. Weintraub, S. J. et al. Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375, 812–815 (1995).
    Article ADS CAS Google Scholar
  14. Chow, K. N. & Dean, D. C. Domains A and B in the Rb pocket interact to form a transcriptional repressor motif. Mol. Cell. Biol. 16, 4862–4868 (1996).
    Article CAS Google Scholar
  15. Yang, W. M., Inouye, C., Zeng, Y., Bearss, D. & Seto, E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl Acad. Sci. USA 93, 12845–12850 (1996).
    Article ADS CAS Google Scholar
  16. Taunton, J., Hassig, C. A. & Schreiber, S. L. Amammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).
    Article ADS CAS Google Scholar
  17. Taya, Y. RB kinases and RB-binding proteins: new points of view. Trends Biochem. Sci. 22, 14–17 (1997).
    Article CAS Google Scholar
  18. Fattaey, A. R., Harlow, E. & Helin, K. Independent regions of adenovirus E1A are required for binding to and dissociation of E2F-protein complexes. Mol. Cell. Biol. 13, 7267–7277 (1993).
    Article CAS Google Scholar
  19. Trouche, D. et al. Hbrm is a downstream target for E2F1 repression by RB. Proc. Natl Acad. Sci. USA 94, 11295–11300 (1997).
    Article Google Scholar
  20. Wolffe, A. P. & Pruss, D. Targeting chromatin disruption: Transcription regulators that acetylate histones. Cell 84, 817–819 (1996).
    Article CAS Google Scholar
  21. Alland, L. et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387, 49–55 (1997).
    Article ADS CAS Google Scholar
  22. Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89, 357–364 (1997).
    Article CAS Google Scholar
  23. Laherty, C. D. et al. Histone deacetylases associated with the mSin3 corepressor mediate made transcriptional repression. Cell 89, 349–356 (1997).
    Article CAS Google Scholar
  24. Heinzel, T. et al. Acomplex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48 (1997).
    Article ADS CAS Google Scholar
  25. Nagy, L. et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373–380 (1997).
    Article CAS Google Scholar
  26. Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L. & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347 (1997).
    Article CAS Google Scholar
  27. Kaelin, W. G., Pallas, D. C., DeCaprio, J. A., Kaye, F. & Livingston, D. M. Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. Cell 64, 521–532 (1991).
    Article CAS Google Scholar
  28. Bandara, L. R. et al. DP-1: a cell cycle-regulated and phosphorylated component of transcription factor DRTF1/E2F which is functionally important for recognition by pRb and the adenovirus E4 orf 6/7 protein. EMBO J. 13, 3104–3114 (1994).
    Article CAS Google Scholar
  29. Groisman, R. et al. Physical interaction between the mitogen-responsive serum response factor and myogenic bHLH proteins. J. Biol. Chem. 271, 5258–5264 (1996).
    Article CAS Google Scholar
  30. Dignam, J. D., Lebowitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble. Nucleic Acids Res. 11, 1474–1486 (1983).
    Article Google Scholar

Download references