The dynamics of actin-based motility depend on surface parameters (original) (raw)

References

  1. Welch, M. D., Mallavarapu, A., Rosenblatt, J. & Mitchison, T. J. Actin dynamics in vivo. Curr. Opin. Cell. Biol. 9, 54–61 (1997)
    Article CAS PubMed Google Scholar
  2. Renfranz, P. J. & Beckerle, M. C. Doing (F/L)PPPPS: EVH1 domains and their proline-rich partners in cell polarity and migration. Curr. Opin. Cell Biol. 14, 88–103 (2002)
    Article CAS PubMed Google Scholar
  3. Pantaloni, D., Le Clainche, C. & Carlier, M.-F. Mechanism of actin-based motility. Science 292, 1502–1506 (2001)
    Article ADS CAS PubMed Google Scholar
  4. Mogilner, A. & Oster, G. Cell motility driven by actin polymerisation. Biophys. J. 71, 3030–3045 (1996)
    Article ADS CAS PubMed PubMed Central Google Scholar
  5. Gerbal, F., Chaikin, P., Rabin, Y. & Prost, J. An elastic analysis of Listeria monocytogenes propulsion. Biophys. J. 79, 2259–2275 (2000)
    Article CAS PubMed PubMed Central Google Scholar
  6. Carlsson, A. E. Growth of branched actin networks against obstacles. Biophys. J. 81, 1907–1923 (2001)
    Article ADS CAS PubMed PubMed Central Google Scholar
  7. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M.-F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999)
    Article ADS CAS PubMed Google Scholar
  8. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP regulates the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998)
    Article CAS PubMed Google Scholar
  9. Takenawa, T. & Miki, H. WASp and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801–1809 (2001)
    CAS PubMed Google Scholar
  10. Lasa, I. et al. Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J. 16, 1531–1540 (1997)
    Article CAS PubMed PubMed Central Google Scholar
  11. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608 (1989)
    Article CAS PubMed Google Scholar
  12. Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerisation is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265–268 (1997)
    Article ADS CAS PubMed Google Scholar
  13. Egile, C. et al. Activation of Cdc42 effector N-WASP by the Shigella IcsA protein promotes actin nucleation by Arp2/3 complex resulting in bacterial actin-based motility. J. Cell. Biol. 146, 1319–1332 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  14. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin polymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  15. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998)
    Article ADS CAS PubMed PubMed Central Google Scholar
  16. Blanchoin, L. et al. Direct observation of dendritic actin filaments networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1011 (2000)
    Article ADS CAS PubMed Google Scholar
  17. Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. & Carlier, M.-F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature Cell Biol. 2, 385–391 (2000)
    Article CAS PubMed Google Scholar
  18. Fradelizi, J. et al. ActA and human zyxin harbour Arp2/3-independent actin-polymerisation activity. Nature Cell Biol. 3, 699–707 (2001)
    Article CAS PubMed Google Scholar
  19. Cameron, L. A., Svitkina, T. M., Vignjevic, D., Theriot, J. A. & Borisy, G. G. Dendritic organization of actin comet tails. Curr. Biol. 11, 130–135 (2001)
    Article CAS PubMed Google Scholar
  20. Cameron, L. A., Footer, M. J., van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerisation. Proc. Natl Acad. Sci. USA 96, 4908–4913 (1999)
    Article ADS CAS PubMed PubMed Central Google Scholar
  21. Noireaux, V. et al. Growing an actin gel on spherical surfaces. Biophys. J. 78, 1643–1654 (2000)
    Article ADS CAS PubMed PubMed Central Google Scholar
  22. Giardini, P. A. & Theriot, J. A. Effects of intermediate filaments on actin-based motility of Listeria monocytogenes. Biophys. J. 81, 3193–3203 (2001)
    Article ADS CAS PubMed PubMed Central Google Scholar
  23. Gerbal, F. et al. On the ‘_Listeria_’ propulsion mechanism. Pramana J. Phys. 53, 155–170 (1999)
    Article ADS CAS Google Scholar
  24. Kuo, S. C. & McGrath, L. Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature 407, 1026–1029 (2000)
    Article ADS CAS PubMed Google Scholar
  25. Rutenberg, A. D. & Grant, M. Curved tails in polymerization-based bacterial motility. Phys. Rev. E 64, 21904–21907 (2001)
    Article ADS CAS Google Scholar
  26. Merrifield, C. J. et al. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nature Cell Biol. 1, 72–74 (1999)
    Article CAS PubMed Google Scholar
  27. Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519–530 (2000)
    Article CAS PubMed PubMed Central Google Scholar
  28. Van Oudenaarden, A. & Theriot, J. A. Cooperative symmetry-breaking by actin polymerisation in a model for cell motility. Nature Cell Biol. 1, 493–499 (1999)
    Article CAS PubMed Google Scholar
  29. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. Nascentfocal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 89–100 (2001)
    Article Google Scholar

Download references