Yang, A.S., Jones, P.A. & Shibata, A. The mutational burden of 5–methylcytosine. in Epigenetic Mechanisms of Gene Regulation (eds Riggs, A.D., Martienssen, R.A., and Russo, V.E.A.) 77–94 (Cold Spring Harbor Laboratory Press, Cold Spring Harbour, 1996). Google Scholar
Yeivin, A. & Razin, A. Gene methylation patterns and expression. in DNA Methylation: Molecular Biology and Biological Significance (eds Jost, J.P. & Saluz, H.P.) 523–568 (Birkhauser Verlag, Basel, 1993). Chapter Google Scholar
Kass, S.U., Pruss, D. & Wolffe, A.P. How does DNA methylation repress transcription? Trends Genet.13, 444–449 (1997). ArticleCAS Google Scholar
Jones, P.A. The methylation paradox. Trends Genet. (in press).
Razin, A. & Riggs, A.D. DNA methylation and gene function. Science210, 604–610 (1980). ArticleCAS Google Scholar
Stoger, R. et al. Maternal–specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell73, 61–71 (1993). ArticleCAS Google Scholar
Larsen, F., Solheim, J. & Prydz, H. A methylated CpG island 3' in the apolipoprotein–E gene does not repress its transcription. Hum. Mol. Genet.2, 775–780 (1993). ArticleCAS Google Scholar
Barry, C., Faugeron, G. & Rossignol, J.–L. Methylation induced premeiotically in Ascobolus : coextension with DNA repeat lengths and effect on transcript elongation. Proc. Natl Acad. Sci. USA90, 4557– 4561 (1993). ArticleCAS Google Scholar
Rountree, M.R. & Selker, E.U. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa . Genes Dev.11, 2383– 2395 (1997). ArticleCAS Google Scholar
Clark, S.J., Harrison, J. & Molloy, P.L. Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene195, 67–71 (1997). ArticleCAS Google Scholar
Prendergast, G.C. & Ziff, E.B. Methylation–sensitive sequence–specific DNA binding by the c–Myc basic region. Science251, 186–189 ( 1991). ArticleCAS Google Scholar
Zhang, X.Y., Ehrlich, K.C., Wang, R.Y. & Ehrlich, M. Effect of site–specific DNA methylation and mutagenesis on recognition by methylated DNA–binding protein from human placenta. Nucleic Acids Res.14, 8387–8397 (1986). ArticleCAS Google Scholar
Asiedu, C.K., Scotto, L., Assoian, R.K. & Ehrlich, M. Binding of AP–1/CREB proteins and of MDBP to contiguous sites downstream of the human TGF–β 1 gene. Biochim. Biophys. Acta1219, 55–63 (1994). ArticleCAS Google Scholar
Nan, X., Campoy, F.J. & Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell88, 471 –481 (1997). ArticleCAS Google Scholar
Nan, X. et al. Transcriptional repression by the methyl–CpG–binding protein MeCP2 involves a histone deacetylase complex. Nature393, 386–389 (1998). ArticleCAS Google Scholar
Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet.19, 187– 191 (1998). ArticleCAS Google Scholar
Bird, A.P. CpG–rich islands and the function of DNA methylation. Nature321, 209–213 ( 1986). ArticleCAS Google Scholar
Gardiner–Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol.196, 261 –282 (1987). Article Google Scholar
Larsen, F., Gundersen, G., Lopez, R. & Prydz, H. CpG islands as gene markers in the human genome. Genomics13, 1095–1107 (1992). ArticleCAS Google Scholar
Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature389, 745– 749 (1997). ArticleCAS Google Scholar
Singer–Sam, J. & Riggs, A.D. X chromosome inactivation and DNA methylation. in DNA Methylation: Molecular Biology and Biological Significance (eds Jost, J.P. & Saluz, H.P.) 358 –384 (Birkhauser Verlag, Basel, 1993 ). Chapter Google Scholar
Issa, J.P. et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genet.7, 536–540 (1994). ArticleCAS Google Scholar
Issa, J.P., Vertino, P.M., Boehm, C.D., Newsham, I.F. & Baylin, S.B. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc. Natl Acad. Sci. USA93, 11757– 11762 (1996). ArticleCAS Google Scholar
Jones, P.A. et al.De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc. Natl Acad. Sci. USA87, 6117–6121 ( 1990). ArticleCAS Google Scholar
Antequera, F., Boyes, J. & Bird, A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell62, 503– 514 (1990). ArticleCAS Google Scholar
Feinberg, A.P., Gehrke, C.W., Kuo, K.C. & Ehrlich, M. Reduced genomic 5–methylcytosine content in human colonic neoplasia. Cancer Res.48, 1159–1161 ( 1988). CASPubMed Google Scholar
Jones, P.A. DNA methylation errors and cancer. Cancer Res.56, 2463–2467 (1996). CASPubMed Google Scholar
Baylin, S.B., Herman, J.G., Graff, J.R., Vertino, P.M. & Issa, J.P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res.72 , 141–196 (1998). ArticleCAS Google Scholar
Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine–5) methyltransferases. Nature Genet.19, 219 –220 (1998). ArticleCAS Google Scholar
Gonzalez–Zuleta, M. et al. Methylation of the 5´ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res.55, 4531– 4535 (1995). Google Scholar
Gonzalgo, M.L. et al. The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res.58, 1245–1252 (1998). CASPubMed Google Scholar
Ohtani–Fujita, N. et al. Hypermethylation in the retinoblastoma gene is associated with unilateral, sporadic retinoblastoma. Cancer Genet. Cytogenet.98, 43–49 ( 1997). Article Google Scholar
Prowse, A.H. et al. Somatic inactivation of the VHL gene in Von Hippel–Lindau disease tumors. Am. J. Hum. Genet.60, 765 –771 (1997). CASPubMedPubMed Central Google Scholar
Herman, J.G. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA95, 6870–6875 ( 1998). ArticleCAS Google Scholar
Lock, L.F., Takagi, N. & Martin, G.R. Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell48, 39–46 (1987). ArticleCAS Google Scholar
Grant, M., Zuccotti, M. & Monk, M. Methylation of CpG sites of two X–linked genes coincides with X–inactivation in the female mouse embryo but not in the germ line. Nature Genet.2, 161– 166 (1992). ArticleCAS Google Scholar
Singer–Sam, J. et al. Use of a HpaII–polymerase chain reaction assay to study DNA methylation in the Pgk–1 CpG island of mouse embryos at the time of X–chromosome inactivation. Mol. Cell. Biol.10, 4987–4989 (1990). Article Google Scholar
Norris, D.P., Brockdorff, N. & Rastan, S. Methylation status of CpG–rich islands on active and inactive mouse X chromosomes. Mamm. Genome.1, 78–83 (1991). ArticleCAS Google Scholar
Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature366, 362–365 ( 1993). ArticleCAS Google Scholar
Laird, P.W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell81, 197–205 (1995). ArticleCAS Google Scholar
Moulton, T. et al. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nature Genet.7, 440– 447 (1994). ArticleCAS Google Scholar
Steenman, M.J. et al. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nature Genet.7, 433–439 ( 1994). ArticleCAS Google Scholar
Ohtani–Fujita, N. et al. CpG methylation inactivates the promoter activity of the human retinoblastoma tumor–suppressor gene. Oncogene8, 1063–1067 (1993). PubMed Google Scholar
Veigl, M.L. et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc. Natl Acad. Sci. USA95, 8698–8702 (1998). ArticleCAS Google Scholar
Cunningham, J.M. et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res.58, 3455–3460 (1998). CASPubMed Google Scholar
Lengauer, C., Kinzler, K.W. & Vogelstein, B. DNA methylation and genetic instability in colorectal cancer cells. Proc. Natl Acad. Sci. USA94, 2545–2550 (1997). ArticleCAS Google Scholar
Ahuja, N. et al. Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res.57, 3370–3374 (1997). CASPubMed Google Scholar
Hussain, S.P. & Harris, C.C. Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res.58, 4023–4037 (1998). CASPubMed Google Scholar
Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science264, 436– 440 (1994). ArticleCAS Google Scholar
Hatada, I., Sugama, T. & Mukai, T. A new imprinted gene cloned by a methylation–sensitive genome scanning method. Nucleic Acids Res.21, 5577–5582 (1993). ArticleCAS Google Scholar
Ushijima, T. et al. Establishment of methylation–sensitive–representational difference analysis and isolation of hypo– and hypermethylated genomic fragments in mouse liver tumors. Proc. Natl Acad. Sci. USA94, 2284–2289 (1997). ArticleCAS Google Scholar
Gonzalgo, M.L. et al. Identification and characterization of differentially methylated regions of genomic DNA by methylation–sensitive arbitrarily primed PCR. Cancer Res.57, 594–599 (1997). CASPubMed Google Scholar
Huang, T.H. et al. Identification of DNA methylation markers for human breast carcinomas using the methylation–sensitive restriction fingerprinting technique. Cancer Res.57, 1030– 1034 (1997). CASPubMed Google Scholar
Toyota, M. et al. Identification of novel aberrantly methylated CpG islands in colorectal carcinoma. Proc. Am. Assoc. Cancer Res.39, 95 (1998). Google Scholar
Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5–methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA89, 1827– 1831 (1992). ArticleCAS Google Scholar
Rein, T., DePamphilis, M.L. & Zorbas, H. Identifying 5–methylcytosine and related modifications in DNA genomes. Nucleic Acids Res.26, 2255 –2264 (1998). ArticleCAS Google Scholar
Gonzalgo, M.L. et al. Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors. Cancer Res.57, 5336–5347 (1997). CASPubMed Google Scholar
Herman, J.G., Graff, J.R., Myohanen, S., Nelkin, B.D. & Baylin, S.B. Methylation–specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA93, 9821–9826 (1996). ArticleCAS Google Scholar
Gonzalgo, M.L. & Jones, P.A. Rapid quantitation of methylation differences at specific sites using methylation–sensitive single nucleotide primer extension (Ms–SNuPE). Nucleic Acids Res.25, 2529–2531 ( 1997). ArticleCAS Google Scholar
Xiong, Z. & Laird, P.W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res.25, 2532–2534 (1997). ArticleCAS Google Scholar
Bender, C.M., Pao, M.M. & Jones, P.A. Inhibition of DNA methylation by 5–aza–2´–deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res.58, 95–101 (1998). CASPubMed Google Scholar
Lübbert, M. et al. Cytogenic response to low–dose 5–aza–2´–deoxycytidine (DAC) in poor–risk myelodysplastic syndromes (MDS)—phase II study results. Blood90 (suppl. 1), 582a (1997). Google Scholar
Silverman, L.R. et al. A randomized controlled trial of subcutaneous azacytidine (aza C) in patients with the myelodysplastic syndrome (MDS): a study of the cancer and leukemia group (CALGB). Proc. ASCO17, 14a (1998). Google Scholar
Jackson–Grusby, L., Laird, P.W., Magge, S.N., Moeller, B.J. & Jaenisch, R. Mutagenicity of 5–aza–2´–deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc. Natl Acad. Sci. USA94, 4681–4685 (1997). Article Google Scholar
Ramchandani, S., MacLeod, A.R., Pinard, M., von Hofe, E. & Szyf, M. Inhibition of tumorigenesis by a cytosine–DNA, methyltransferase, antisense oligodeoxynucleotide. Proc. Natl Acad. Sci. USA94, 684–689 ( 1997). ArticleCAS Google Scholar
Sakai, T. et al. Allele–specific hypermethylation of the retinoblastoma tumor–suppressor gene. Am. J. Hum. Genet.48, 880–888 (1991). CASPubMedPubMed Central Google Scholar
Greenblatt, M.S., Bennett, W.P., Hollstein, M. & Harris, C.C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res.54, 4855–4878 (1994). CASPubMed Google Scholar
Myohanen, S.K., Baylin, S.B. & Herman, J.G. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res.58, 591–593 (1998). CASPubMed Google Scholar
Yeager, T.R. et al. Overcoming cellular senescence in human cancer pathogenesis. Genes Dev.12, 163–174 (1998). ArticleCAS Google Scholar
Flores, J.F. et al. Analysis of the CDKN2A, CDKN2B and CDK4 genes in 48 Australian melanoma kindreds. Oncogene15, 2999–3005 (1997). ArticleCAS Google Scholar
Batova, A. et al. Frequent and selective methylation of p15 and deletion of both p15 and p16 in T–cell acute lymphoblastic leukemia. Cancer Res.57, 832–836 (1997). CASPubMed Google Scholar
Hiltunen, M.O. et al. Hypermethylation of the APC (adenomatous polyposis coli) gene promoter region in human colorectal carcinoma. Int. J. Cancer70, 644–648 ( 1997). ArticleCAS Google Scholar