Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences (original) (raw)
Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science272, 263–267 (1996). ArticleCASPubMed Google Scholar
Naldini, L. Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr. Opin. Biotechnol.9, 457–463 (1998). ArticleCASPubMed Google Scholar
Bukrinsky, M.I. et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature365, 666–669 (1993). ArticleCASPubMed Google Scholar
Gallay, P., Swingler, S., Aiken, C. & Trono, D. HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator. Cell80, 379–388 (1995). ArticleCASPubMed Google Scholar
Charneau, P., Alizon, M. & Clavel, F. A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J. Virol.66, 2814–2820 (1992). CASPubMedPubMed Central Google Scholar
Charneau, P. et al. HIV-1 reverse transcription. A termination step at the center of the genome. J. Mol. Biol.241, 651–662 (1994). ArticleCASPubMed Google Scholar
Ilyinskii, P.O. & Desrosiers, R.C. Identification of a sequence element immediately upstream of the polypurine tract that is essential for replication of simian immunodeficiency virus. EMBO J.17, 3766–3774 (1998). ArticleCASPubMedPubMed Central Google Scholar
Powell, M.D. & Levin, J.G. Sequence and structural determinants required for priming of plus-strand DNA synthesis by the human immunodeficiency virus type 1 polypurine tract. J. Virol.70, 5288–5296 (1996). CASPubMedPubMed Central Google Scholar
Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol.72, 9873–9880 (1998). CASPubMedPubMed Central Google Scholar
Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nature Biotechnol.15, 871–875 (1997). ArticleCAS Google Scholar
Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol.72, 8463–8471 (1998). CASPubMedPubMed Central Google Scholar
Lewis, P., Hensel, M. & Emerman, M. Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J.11, 3053–3058 (1992). ArticleCASPubMedPubMed Central Google Scholar
Nie, Z. et al. The putative α helix 2 of human immunodeficiency virus type 1 Vpr contains a determinant which is responsible for the nuclear translocation of proviral DNA in growth-arrested cells. J. Virol.72, 4104–4115 (1998). CASPubMedPubMed Central Google Scholar
Kiernan, R.E., Ono, A., Englund, G. & Freed, E.O. Role of matrix in an early postentry step in the human immunodeficiency virus type 1 life cycle. J. Virol.72, 4116–4126 (1998). CASPubMedPubMed Central Google Scholar
Schmidtmayerova, H., Alfano, M., Nuovo, G. & Bukrinsky, M. Human immunodeficiency virus type 1 T-lymphotropic strains enter macrophages via a CD4- and CXCR4-mediated pathway: replication is restricted at a postentry level. J. Virol.72, 4633–4642 (1998). CASPubMedPubMed Central Google Scholar
Hansen, M.S. et al. Integration complexes derived from HIV vectors for rapid assays in vitro. Nature Biotechnol.17, 578–582 (1999). ArticleCAS Google Scholar
Miller, M.D., Farnet, C.M. & Bushman, F.D. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J. Virol.71, 5382–5390 (1997). CASPubMedPubMed Central Google Scholar
Akkina, R.K. et al. High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol.70, 2581–2585 (1996). CASPubMedPubMed Central Google Scholar
Case, S.S. et al. Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc. Natl Acad. Sci. USA96, 2988–2993 (1999). ArticleCASPubMedPubMed Central Google Scholar
Miyoshi, H., Smith, K.A., Mosier, D.E., Verma, I.M. & Torbett, B.E. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science283, 682–686 (1999). ArticleCASPubMed Google Scholar
Uchida, N. et al. HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc. Natl Acad. Sci. USA95, 11939–11944 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sutton, R.E., Wu, H.T., Rigg, R., Bohnlein, E. & Brown, P.O. Human immunodeficiency virus type 1 vectors efficiently transduce human hematopoietic stem cells. J. Virol.72, 5781–5788 (1998). CASPubMedPubMed Central Google Scholar
Conneally, E., Eaves, C.J. & Humphries, R.K. Efficient retroviral-mediated gene transfer to human cord blood stem cells with in vivo repopulating potential. Blood91, 3487–3493 (1998). CASPubMed Google Scholar
Marandin, A. et al. Retrovirus-mediated gene transfer into human CD34+38low primitive cells capable of reconstituting long-term cultures in vitro and nonobese diabetic-severe combined immunodeficiency mice in vivo. Hum. Gene Ther.9, 1497–1511 (1998). ArticleCASPubMed Google Scholar
Andreadis, S.T., Brott, D., Fuller, A.O. & Palsson, B.O. Moloney murine leukemia virus-derived retroviral vectors decay intracellularly with a half-life in the range of 5.5 to 7.5 hours. J. Virol.71, 7541–7548 (1997). CASPubMedPubMed Central Google Scholar
Schwartz, O., Marechal, V., Friguet, B., Arenzana-Seisdedos, F. & Heard, J.M. Antiviral activity of the proteasome on incoming human immunodeficiency virus type 1. J. Virol.72, 3845–3850 (1998). CASPubMedPubMed Central Google Scholar
Charneau, P. & Clavel, F. A single-stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract. J. Virol.65, 2415–2421 (1991). CASPubMedPubMed Central Google Scholar
Bukrinskaya, A., Brichacek, B., Mann, A. & Stevenson, M. Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J. Exp. Med.188, 2113–2125 (1998). ArticleCASPubMedPubMed Central Google Scholar