Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly (original) (raw)

References

  1. Jahn, R. & Südhof, T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).
    Article CAS PubMed Google Scholar
  2. Weimbs, T., et al. A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc. Natl. Acad. Sci. USA 94, 3046–3051 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  3. Hanson, P.I., Otto, H., Barton, N. & Jahn, R. The N-ethylmaleimide-sensitive fusion protein and α-SNAP induce a conformational change in syntaxin. J. Biol. Chem. 270, 16955–16961 (1995).
    Article CAS PubMed Google Scholar
  4. Poirier, M.A., et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nature Struct. Biol. 5, 765–769 (1998).
    Article CAS PubMed Google Scholar
  5. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).
    Article CAS PubMed Google Scholar
  6. Katz, L., Hanson, P.I., Heuser, J.E. & Brennwald, P. Genetic and morphological analyses reveal a critical interaction between the C-termini of two SNARE proteins and a parallel four helical arrangement for the exocytic SNARE complex. EMBO J. 17, 6200–6209 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  7. Weber, T., et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).
    Article CAS PubMed Google Scholar
  8. Bennett, M.K., Calakos, N. & Scheller, R.H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).
    Article CAS PubMed Google Scholar
  9. Fernandez, I., et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841–849 (1998).
    Article CAS PubMed Google Scholar
  10. Misura, K.M.S., Scheller, R.H. & Weis, W.I. Three-dimensional structure of the neuronal–Sec1-syntaxin complex. Nature 404, 355–362 (2000).
    Article CAS PubMed Google Scholar
  11. Calakos, N., Bennett, M.K., Peterson, K.E. & Scheller, R.H. Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263, 1146–1149 (1994).
    Article CAS PubMed Google Scholar
  12. Nicholson, K.L., et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nature Struct. Biol. 5, 793–802 (1998).
    Article CAS PubMed Google Scholar
  13. Fiebig, K.M., Rice, L.M., Pollock, E. & Brunger, A.T. Folding intermediates of SNARE complex assembly. Nature Struct. Biol. 6, 117–123 (1999).
    Article CAS PubMed Google Scholar
  14. Dulubova, I., et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  15. Scales, S.J., et al. SNAREs contribute to the specificity of membrane fusion. Neuron 26, 457–464 (2000).
    Article CAS PubMed Google Scholar
  16. Aalto, M.K., Ronne, H. & Keränen, S. Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO J. 12, 4095–4104 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  17. Carr, C.M., Grote, E., Munson, M., Hughson, F.M. & Novick, P.J. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell Biol. 146, 333–344 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  18. Waters, M.G. & Hughson, F.M. Membrane tethering and fusion in the secretory and endocytic pathways. Traffic 1, 588–597 (2000).
    Article CAS PubMed Google Scholar
  19. Lerman, J.C., Robblee, J., Fairman, R. & Hughson, F.M. Structural analysis of the neuronal SNARE protein syntaxin-1A. Biochemistry 39, 8470–8479 (2000).
    Article CAS PubMed Google Scholar
  20. Carr, C.M. & Novick, P.J. Membrane fusion: changing partners. Nature 404, 347–349 (2000).
    Article CAS PubMed Google Scholar
  21. Parlati, F., et al. Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl. Acad. Sci. USA 96, 12565–12570 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  22. Betz, A., Okamoto, M., Benseler, F. & Brose, N. Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J. Biol. Chem. 272, 2520–2526 (1997).
    Article CAS PubMed Google Scholar
  23. Rossi, G., Salminen, A., Rice, L.M., Brünger, A.T. & Brennwald, P. Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C terminus of the SNAP-25 homolog, Sec9. J. Biol. Chem. 272, 16610–16617 (1997).
    Article CAS PubMed Google Scholar
  24. Rice, L.M., Brennwald, P. & Brünger, A.T. Formation of a yeast SNARE complex is accompanied by significant structural changes. FEBS Lett. 415, 49–55 (1997).
    Article CAS PubMed Google Scholar
  25. Brennwald, P., et al. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79, 245–258 (1994).
    Article CAS PubMed Google Scholar
  26. Finger, F.P. & Novick, P. Spatial regulation of exocytosis: lessons from yeast. J. Cell Biol. 142, 609–612 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  27. Fasshauer, D., Eliason, W.K., Brunger, A.T. & Jahn, R. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37, 10354–10362 (1998).
    Article CAS PubMed Google Scholar
  28. Fasshauer, D., Bruns, D., Shen, B., Jahn, R. & Brünger, A.T. A structural change occurs upon binding of syntaxin to SNAP-25. J. Biol. Chem. 272, 4582–4590 (1997).
    Article CAS PubMed Google Scholar
  29. Yang, B., Steegmaier, M., Gonzalez, L.C. & Scheller, R.H. nSec1 binds a closed conformation of syntaxin1A. J. Cell Biol. 148, 247–252 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  30. Fasshauer, D., Antonin, W., Margittai, M., Pabst, S. & Jahn, R. Mixed and non-cognate SNARE complexes. J. Biol. Chem. 274, 15440–15446 (1999).
    Article CAS PubMed Google Scholar
  31. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 (1980).
    Article CAS PubMed Google Scholar
  32. Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9, 496–504 (1997).
    Article CAS PubMed Google Scholar
  33. Terbush, D.R., Maurice, T., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  34. Yang, B., et al. SNARE interactions are not selective: implications for membrane fusion specificity. J. Biol. Chem. 274, 5649–5653 (1999).
    Article CAS PubMed Google Scholar
  35. Tsui, M.M. & Banfield, D.K. Yeast Golgi SNARE interactions are promiscuous. J. Cell Sci. 113, 145–152 (2000).
    CAS PubMed Google Scholar
  36. Guide to Native PAGE. Technical Literature #1822 (Bio-Rad Laboratories, Hercules, California; 1993).
  37. Winzeler, E.A., et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).
    Article CAS PubMed Google Scholar
  38. Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H. & Hieter, P. Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119–122 (1992).
    Article CAS PubMed Google Scholar
  39. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).
    CAS PubMed PubMed Central Google Scholar
  40. Leahy, D.J., Erickson, H.P., Aukhil, I., Joshi, P. & Hendrickson, W.A. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins 19, 48–54 (1994).
    Article CAS PubMed Google Scholar
  41. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1998).
    Article Google Scholar
  42. Terwilliger, T.C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  43. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).
  44. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article PubMed Google Scholar
  45. Brunger, A.T., et al. Crystallography and NMR System (CNS): a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
    Article CAS PubMed Google Scholar
  46. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 924–950 (1991).
    Article Google Scholar
  47. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).
    Article CAS PubMed Google Scholar
  48. Carson, M. Ribbon models of macromolecules. J. Mol. Graph. 5, 103–106 (1987).
    Article CAS Google Scholar

Download references