Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice (original) (raw)

References

  1. Lewis, J.D. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914 (1992).
    Article CAS Google Scholar
  2. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).
    Article CAS Google Scholar
  3. Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191 (1998).
    Article CAS Google Scholar
  4. Coy, J.F., Sedlacek, Z., Bachner, D., Delius, H. & Poustka, A. A complex pattern of evolutionary conservation and alternative polyadenylation within the long 3"-untranslated region of the methyl-CpG-binding protein 2 gene (MeCP2) suggests a regulatory role in gene expression. Hum. Mol. Genet. 8, 1253–1262 (1999).
    Article CAS Google Scholar
  5. Amir, R.E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999).
    Article CAS Google Scholar
  6. Wan, M. et al. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am. J. Hum. Genet. 65, 1520–1529 (1999).
    Article CAS Google Scholar
  7. Van den Veyver, I.B. & Zoghbi, H.Y. Methyl-CpG-binding protein 2 mutations in Rett syndrome. Curr. Opin. Genet. Dev. 10, 275–279 (2000).
    Article CAS Google Scholar
  8. Dragich, J., Houwink-Manville, I. & Schanen, C. Rett syndrome: a surprising result of mutation in MECP2. Hum. Mol. Genet. 9, 2365–2375 (2000).
    Article CAS Google Scholar
  9. Rett, A. Uber ein eigenartiges hirnatrophisches Syndrom bei Hyperammonamie im Kindersalter. Wien Med. Wochenschr. 116, 723–726 (1966).
    CAS PubMed Google Scholar
  10. Hagberg, B., Aicardi, J., Dias, K. & Ramos, O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Ann. Neurol. 14, 471–479 (1983).
    Article CAS Google Scholar
  11. Armstrong, D.D. Review of Rett syndrome. J. Neuropathol. Exp. Neurol. 56, 843–849 (1997).
    Article CAS Google Scholar
  12. Tate, P., Skarnes, W. & Bird, A. The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nature Genet. 12, 205–208 (1996).
    Article CAS Google Scholar
  13. Ellaway, C. & Christodoulou, J. Rett syndrome: clinical update and review of recent genetic advances. J. Paediatr. Child Health 35, 419–426 (1999).
    Article CAS Google Scholar
  14. Schanen, N.C. et al. Neonatal encephalopathy in two boys in families with recurrent Rett syndrome. J. Child Neurol. 13, 229–231 (1998).
    Article CAS Google Scholar
  15. Schanen, C. & Francke, U. A severely affected male born into a Rett syndrome kindred supports X-linked inheritance and allows extension of the exclusion map. Am. J. Hum. Genet. 63, 267–269 (1998).
    Article CAS Google Scholar
  16. Villard, L., Cardoso, A.K., Chelly, P.J., Tardieu, P.M. & Fontes, M. Two affected boys in a Rett syndrome family: clinical and molecular findings. Neurology 55, 1188–1193 (2000).
    Article CAS Google Scholar
  17. Meloni, I. et al. A mutation in the rett syndrome gene, MECP2, causes X-linked mental retardation and progressive spasticity in males. Am. J. Hum. Genet. 67, 982–985 (2000).
    Article CAS Google Scholar
  18. Clayton-Smith, J., Watson, P., Ramsden, S. & Black, G.C. Somatic mutation in MECP2 as a non-fatal neurodevelopmental disorder in males. Lancet 356, 830–832 (2000).
    Article CAS Google Scholar
  19. Orrico, A. et al. MECP2 mutation in male patients with non-specific X-linked mental retardation. FEBS Lett. 481, 285–288 (2000).
    Article CAS Google Scholar
  20. Trumpp, A., Depew, M.J., Rubenstein, J.L., Bishop, J.M. & Martin, G.R. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 13, 3136–3148 (1999).
    Article CAS Google Scholar
  21. Fan, G. et al. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J. Neurosci. 21, 788–797 (2001).
    Article CAS Google Scholar
  22. Guy, J., Hendrich, B., Martin, J.E. & Bird, A. A mouse _Mecp2_-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genet. 27, 322–326 (2001).
    Article CAS Google Scholar
  23. Jellinger, K., Armstrong, D., Zoghbi, H.Y. & Percy, A.K. Neuropathology of Rett syndrome. Acta Neuropathol. 76, 142–158 (1988).
    Article CAS Google Scholar
  24. Hagberg, G., Stenbom, Y. & Witt Engerstrom, I. Head growth in Rett syndrome. Acta Paediatr. 89, 198–202 (2000).
    Article CAS Google Scholar
  25. Bauman, M.L., Kemper, T.L. & Arin, D.M. Microscopic observations of the brain in Rett syndrome. Neuropediatrics 26, 105–108 (1995).
    Article CAS Google Scholar
  26. Bauman, M.L., Kemper, T.L. & Arin, D.M. Pervasive neuroanatomic abnormalities of the brain in three cases of Rett's syndrome. Neurology 45, 1581–1586 (1995).
    Article CAS Google Scholar
  27. Minichiello, L. et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24, 401–414 (1999).
    Article CAS Google Scholar
  28. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999).
    Article CAS Google Scholar
  29. Dragatsis, I. & Zeitlin, S. CaMKIIα-Cre transgene expression and recombination patterns in the mouse brain. Genesis 26, 133–135 (2000).
    Article CAS Google Scholar

Download references