Dendritic cells: On the move from bench to bedside (original) (raw)
Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). ArticleCAS Google Scholar
Lotze, M.T., Shurin, M., Davis, I., Amoscato, A. & Storkus, W.J. Dendritic cell based therapy of cancer. Adv. Exp. Med. Biol.417, 551–569 (1997). ArticleCAS Google Scholar
Clark, G.J. & Hart, D.N.J. Phenotypic characterization of dendritic cells. in Dendritic Cells: Biology and Clinical Applications (ed. Lotze, M.T.) 555–557 (Academic, London, 1998). Google Scholar
Gilboa, E., Nair, S.K. & Lyerly, H.K. Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol. Immunother.46, 82–87 (1998). ArticleCAS Google Scholar
Young, J.W. & Inaba, K. Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity. J. Exp.Med.183, 7–11 (1996). ArticleCAS Google Scholar
Timmerman, J.M. & Levy, R. Dendritic cell vaccines for cancer immunotherapy. Annu. Rev. Med.50, 507–529 (1999). ArticleCAS Google Scholar
Nestle, F.O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med.4, 328–332 (1998). ArticleCAS Google Scholar
Thurner, B. et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med.190, 1669–1678 (1999). ArticleCAS Google Scholar
Fong, L. & Engleman, E.G. Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol.18, 245–273 (2000). ArticleCAS Google Scholar
Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony- stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor-α. J. Exp. Med.179, 1109–1118 (1994). ArticleCAS Google Scholar
Romani, N. et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med.180, 83–93 (1994). ArticleCAS Google Scholar
Randolph, G.J., Inaba, K., Robbiani, D.F., Steinman, R.M. & Muller, W.A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity11, 753–7561 (1999). ArticleCAS Google Scholar
Banchereau, J., Pulendran, B., Steinman, R. & Palucka, K. Will the making of plasmacytoid dendritic cells in vitro help unravel their mysteries? J. Exp. Med.192 (2000).
Hart, D.N.J. et al. 7th leucocyte differentiation antigen workshop dendritic cells section summary. in Leucocyte Typing Vol. VII (ed. Mason, D.) (Oxford University Press, Oxford, 2000). Google Scholar
Schuler, G. & Steinman, R.M. Murine epidermal Langerhans cells mature into potent allostimulatory dendritic cells in vitro. J. Exp. Med.161, 526–546 (1985). ArticleCAS Google Scholar
Dhodapkar, M.V. et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J. Clin. Invest.104, 173–180. (1999). ArticleCAS Google Scholar
Lodge, P.A., Jones, L.A., Bader, R.A., Murphy, G.P. & Salgaller, M.L. Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a phase II clinical trial. Cancer Res.60, 829–833. (2000). CASPubMed Google Scholar
Murphy, G.P. et al. Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: A phase 2 prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate.38, 73–78 (1999). ArticleCAS Google Scholar
Hsu, F.J. et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med.2, 52–57 (1996). ArticleCAS Google Scholar
Dhodapkar, M.V., Steinman, R.M., Krasovsky, J., Munz, M. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med.193, 233–238 (2001). ArticleCAS Google Scholar
Toes, R.E. et al. Enhancement of tumor outgrowth through CTL tolerization after peptide vaccination is avoided by peptide presentation on dendritic cells. J. Immunol.160, 4449–4456 (1998). CASPubMed Google Scholar
Small, E.J. et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J. Clin. Oncol.18, 3894–3903 (2000). ArticleCAS Google Scholar
Binder, R.J., Han, D.K. & Srivastava, P.K. CD91: a receptor for heat shock protein gp96. Nature Immunol.1, 151–155 (2000). ArticleCAS Google Scholar
Kugler, A. et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nature Med.6, 332–336 (2000). ArticleCAS Google Scholar
Boczkowski, D., Nair, S.K., Nam, J.H., Lyerly, H.K. & Gilboa, E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res.60, 1028–1034 (2000). CASPubMed Google Scholar
Vonderheide, R.H., Hahn, W.C., Schultze, J.L. & Nadler, L.M. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity10, 673–679 (1999). ArticleCAS Google Scholar
Dhodapkar, M.V., Krasovsky, J., Steinman, R.M. & Bhardwaj, N. Mature dendritic cells boost functionally superior CD8(+) T-cell in humans without foreign helper epitopes. J. Clin. Invest.105, R9–R14 (2000). ArticleCAS Google Scholar
Eggert, A. et al. Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res.59, 3340–3345 (1999). CASPubMed Google Scholar
Barratt-Boyes, S.M. et al. Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines. J. Immunol.164, 2487–2495 (2000). ArticleCAS Google Scholar
Thomas, R. et al. Immature human monocyte-derived dendritic cells migrate rapidly to draining lymph nodes after intradermal injection for melanoma immunotherapy. Melanoma Res.9, 474–481 (1999). ArticleCAS Google Scholar
Morse, M.A. et al. Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res.59, 56–58 (1999). CASPubMed Google Scholar
Fong, L., Brockstedt, D., Benike, C., Wu, L. & Engleman, E.G. Dendritic cells injected via different routes induce immunity in cancer patients. J. Immunol.166, 4254–4259. (2001). ArticleCAS Google Scholar
Serody, J.S., Collins, E.J., Tisch, R.M., Kuhns, J.J. & Frelinger, J.A. T cell activity after dendritic cell vaccination is dependent on both the type of antigen and the mode of delivery. J Immunol.164, 4961–4967 (2000). ArticleCAS Google Scholar
Morse, M. et al. A phase 1 study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin. Cancer Res.5, 1331–1338 (1999). CASPubMed Google Scholar
Feuerstein, B. et al. A method for the production of cryopreserved aliquots of antigen- preloaded, mature dendritic cells ready for clinical use. J. Immunol. Meth.245, 15–29 (2000). ArticleCAS Google Scholar
Ludewig, B. et al. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J. Exp. Med.191, 795–803 (2000). ArticleCAS Google Scholar
Heiser, A. et al. Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-Cell responses against antigens expressed by primary and metastatic tumors. Cancer Res.61, 3388–3393 (2001). CASPubMed Google Scholar
Mackensen, A., Drager, R., Schlesier, M., Mertelsmann, R. & Lindemann, A. Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol. Immunother.49, 152–156 (2000). ArticleCAS Google Scholar
McGuckin, M.A., MacDonald, K.P.A., Tran, M., Wykes, M. & Hart, D.N.J. MUC1 epithelial mucin—expression by normal haematopoietic cells. in Leucocyte Typing, Vol. VII (ed. Mason, D.) (Oxford University Press, Oxford, 2000). Google Scholar
Romero, P., Cerottini, J.C. & Waanders, G.A. Novel methods to monitor antigen-specific cytotoxic T-cell responses in cancer immunotherapy. Mol. Med. Today4, 305–312 (1998). ArticleCAS Google Scholar
Kammula, U.S., Marincola, F.M. & Rosenberg, S.A. Real-time quantitative polymerase chain reaction assessment of immune reactivity in melanoma patients after tumor peptide vaccination. J. Natl. Cancer Inst.92, 1336–1344 (2000). ArticleCAS Google Scholar
Panelli, M.C. et al. Expansion of tumor-T cell pairs from fine needle aspirates of melanoma metastases. J. Immunol.164, 495–504 (2000). ArticleCAS Google Scholar
Marincola, F.M., Jaffee, E.M., Hicklin, D.J. & Ferrone, S. Escape of human solid tumors from T-cell recognition: Molecular mechanisms and functional significance. Adv. Immunol.74, 181–273 (2000). ArticleCAS Google Scholar
Hart, D.N.J. & Hill, G.R. Dendritic cell immunotherapy for cancer: application to low-grade lymphoma and multiple myeloma. Immunol. Cell Biol.77, 451–459 (1999). ArticleCAS Google Scholar