Hough, R., Pratt, G. & Rechsteiner, M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem.262, 8303–8313 (1987). ArticleCASPubMed Google Scholar
Waxman, L., Fagan, J. M. & Goldberg, A. L. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J. Biol. Chem.262, 2451–2457 (1987). ArticleCASPubMed Google Scholar
Bortezomib (Velcade) for multiple myeloma. Med. Lett. Drugs Ther.45, 57–58 (2003).
Brooks, P. et al. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem. J.346, 155–161 (2000). This paper demonstrates the complexity of proteasomal populations and localizations in mammalian cells. ArticleCASPubMedPubMed Central Google Scholar
Peters, J. M., Cejka, Z., Harris, J. R., Kleinschmidt, J. A. & Baumeister, W. Structural features of the 26 S proteasome complex. J. Mol. Biol.234, 932–937 (1993). ArticleCASPubMed Google Scholar
Elliott, P. J. & Ross, J. S. The proteasome: a new target for novel drug therapies. Am. J. Clin. Pathol.116, 637–646 (2001). ArticleCASPubMed Google Scholar
Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell92, 367–380 (1998). ArticleCASPubMed Google Scholar
DeMartino, G. N. & Slaughter, C. A. The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem.274, 22123–22126 (1999). ArticleCASPubMed Google Scholar
Kisselev, A. F., Akopian, T. N., Castillo, V. & Goldberg, A. L. Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol. Cell4, 395–402 (1999). ArticleCASPubMed Google Scholar
Goldberg, A. L., Cascio, P., Saric, T. & Rock, K. L. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol. Immunol.39, 147–164 (2002). ArticleCASPubMed Google Scholar
Kisselev, A. F. et al. The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J. Biol. Chem.278, 35869–35877 (2003). ArticleCASPubMed Google Scholar
Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell94, 615–623 (1998). ArticleCASPubMed Google Scholar
Benaroudj, N., Zwickl, P., Seemuller, E., Baumeister, W. & Goldberg, A. L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell11, 69–78 (2003). ArticleCASPubMed Google Scholar
Kalejta, R. F. & Shenk, T. Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc. Natl Acad. Sci. USA100, 3263–3268 (2003). ArticleCASPubMedPubMed Central Google Scholar
Benaroudj, N., Tarcsa, E., Cascio, P. & Goldberg, A. L. The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes. Biochimie83, 311–318 (2001). ArticleCASPubMed Google Scholar
Ahn, K. et al. In vivo characterization of the proteasome regulator PA28. J. Biol. Chem.271, 18237–18242 (1996). ArticleCASPubMed Google Scholar
Ma, C. P., Slaughter, C. A. & DeMartino, G. N. Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain). J. Biol. Chem.267, 10515–10523 (1992). ArticleCASPubMed Google Scholar
Mott, J. D. et al. PA28, an activator of the 20 S proteasome, is composed of two nonidentical but homologous subunits. J. Biol. Chem.269, 31466–31471 (1994). ArticleCASPubMed Google Scholar
Nikaido, T. et al. Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus. Clin. Exp. Immunol.79, 209–214 (1990). ArticleCASPubMedPubMed Central Google Scholar
Realini, C. et al. Characterization of recombinant REGα, REGβ, and REGγ proteasome activators. J. Biol. Chem.272, 25483–25492 (1997). ArticleCASPubMed Google Scholar
Rechsteiner, M., Realini, C. & Ustrell, V. The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochem. J.345, 1–15 (2000). ArticleCASPubMedPubMed Central Google Scholar
Groettrup, M. et al. A role for the proteasome regulator PA28α in antigen presentation. Nature381, 166–168 (1996). ArticleCASPubMed Google Scholar
Murata, S. et al. Immunoproteasome assembly and antigen presentation in mice lacking both PA28α and PA28β. EMBO J.20, 5898–5907 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gaczynska, M., Rock, K. L. & Goldberg, A. L. γ-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature365, 264–267 (1993). ArticleCASPubMed Google Scholar
Bose, S., Brooks, P., Mason, G. G. & Rivett, A. J. γ-interferon decreases the level of 26 S proteasomes and changes the pattern of phosphorylation. Biochem. J.353, 291–297 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hill, C. P., Masters, E. I. & Whitby, F. G. The 11S regulators of 20S proteasome activity. Curr. Top. Microbiol. Immunol.268, 73–89 (2002). CASPubMed Google Scholar
Whitby, F. G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature408, 115–120 (2000). ArticleCASPubMed Google Scholar
Realini, C., Rogers, S. W. & Rechsteiner, M. KEKE motifs. Proposed roles in protein-protein association and presentation of peptides by MHC class I receptors. FEBS Lett.348, 109–113 (1994). ArticleCASPubMed Google Scholar
Amsterdam, A., Pitzer, F. & Baumeister, W. Changes in intracellular localization of proteasomes in immortalized ovarian granulosa cells during mitosis associated with a role in cell cycle control. Proc. Natl Acad. Sci. USA90, 99–103 (1993). ArticleCASPubMedPubMed Central Google Scholar
Palmer, A., Mason, G. G., Paramio, J. M., Knecht, E. & Rivett, A. J. Changes in proteasome localization during the cell cycle. Eur. J. Cell Biol.64, 163–175 (1994). CASPubMed Google Scholar
Lafarga, M., Fernandez, R., Mayo, I., Berciano, M. T. & Castano, J. G. Proteasome dynamics during cell cycle in rat Schwann cells. Glia38, 313–328 (2002). ArticlePubMed Google Scholar
Reits, E. A., Benham, A. M., Plougastel, B., Neefjes, J. & Trowsdale, J. Dynamics of proteasome distribution in living cells. EMBO J.16, 6087–6094 (1997). This paper demonstrates the free and rapid diffusion of the vast majority (> 90%) of the proteasome within, but not between, the cytoplasmic and nuclear compartments of the cell, and how the cytoplasmically generated proteasome enters the nucleus. ArticleCASPubMedPubMed Central Google Scholar
Wojcik, C. & DeMartino, G. N. Intracellular localization of proteasomes. Int. J. Biochem. Cell Biol.35, 579–589 (2003). ArticleCASPubMed Google Scholar
Gordon, C. The intracellular localization of the proteasome. Curr. Top. Microbiol. Immunol.268, 175–184 (2002). CASPubMed Google Scholar
King, R. W., Deshaies, R. J., Peters, J. M. & Kirschner, M. W. How proteolysis drives the cell cycle. Science274, 1652–1659 (1996). ArticleCASPubMed Google Scholar
Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature349, 132–138 (1991). ArticleCASPubMed Google Scholar
Diehl, J. A., Zindy, F. & Sherr, C. J. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev.11, 957–972 (1997). ArticleCASPubMed Google Scholar
Clurman, B. E., Sheaff, R. J., Thress, K., Groudine, M. & Roberts, J. M. Turnover of cyclin E by the ubiquitin–proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev.10, 1979–1990 (1996). ArticleCASPubMed Google Scholar
Pagano, M. et al. Role of the ubiquitin–proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science269, 682–685 (1995). ArticleCASPubMed Google Scholar
Shirane, M. et al. Down-regulation of p27Kip1 by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J. Biol. Chem.274, 13886–13893 (1999). ArticleCASPubMed Google Scholar
Tam, S. W., Theodoras, A. M. & Pagano, M. Kip1 degradation via the ubiquitin–proteasome pathway. Leukemia11(Suppl 3), 363–366 (1997). PubMed Google Scholar
Mailand, N. et al. Rapid destruction of human Cdc25A in response to DNA damage. Science288, 1425–1429 (2000). ArticleCASPubMed Google Scholar
Bernardi, R., Liebermann, D. A. & Hoffman, B. Cdc25A stability is controlled by the ubiquitin-proteasome pathway during cell cycle progression and terminal differentiation. Oncogene19, 2447–2454 (2000). ArticleCASPubMed Google Scholar
Baldin, V., Cans, C., Knibiehler, M. & Ducommun, B. Phosphorylation of human CDC25B phosphatase by CDK1–cyclin A triggers its proteasome-dependent degradation. J. Biol. Chem.272, 32731–32734 (1997). ArticleCASPubMed Google Scholar
Chen, F. et al. Arsenite-induced Cdc25C degradation is through the KEN-box and ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA99, 1990–1995 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chène, P. Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nature Rev. Cancer3, 102–109 (2003). ArticleCAS Google Scholar
Soussi, T. The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann. NY Acad. Sci.910, 121–137 (2000). ArticleCASPubMed Google Scholar
Momand, J., Wu, H. H. & Dasgupta, G. MDM2—master regulator of the p53 tumor suppressor protein. Gene242, 15–29 (2000). ArticleCASPubMed Google Scholar
Maki, C. G., Huibregtse, J. M. & Howley, P. M. In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res.56, 2649–2654 (1996). CASPubMed Google Scholar
Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature387, 299–303 (1997). ArticleCASPubMed Google Scholar
Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature387, 296–299 (1997). ArticleCASPubMed Google Scholar
Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett.420, 25–27 (1997). ArticleCASPubMed Google Scholar
Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem.275, 8945–8951 (2000). ArticleCASPubMed Google Scholar
Karin, M., Cao, Y., Greten, F. R. & Li, Z. W. NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer2, 301–310 (2002). ArticleCAS Google Scholar
Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell78, 773–785 (1994). ArticleCASPubMed Google Scholar
Li, C. C., Dai, R. M. & Longo, D. L. Inactivation of NF-κB inhibitor IκBα: ubiquitin-dependent proteolysis and its degradation product. Biochem. Biophys. Res. Commun.215, 292–301 (1995). ArticleCASPubMed Google Scholar
Adams, J. Proteasome inhibition: a novel approach to cancer therapy. Trends Mol. Med.8, S49–S54 (2002). ArticleCASPubMed Google Scholar
Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S. Jr. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science281, 1680–1683 (1998). An early study demonstrating that proteasome inhibition induces apoptosis in proliferating (but not quiescent and differentiated) leukaemic cells in a manner that is associated with the activation of CPP32 and increased KIP1 levels. ArticleCASPubMed Google Scholar
Varfolomeev, E. E. et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity.9, 267–276 (1998). ArticleCASPubMed Google Scholar
Drexler, H. C. Activation of the cell death program by inhibition of proteasome function. Proc. Natl Acad. Sci. USA94, 855–860 (1997). ArticleCASPubMedPubMed Central Google Scholar
Masdehors, P. et al. Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin. Br. J. Haematol.105, 752–757 (1999). ArticleCASPubMed Google Scholar
Drexler, H. C., Risau, W. & Konerding, M. A. Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J.14, 65–77 (2000). ArticleCASPubMed Google Scholar
Kudo, Y. et al. p27Kip1 accumulation by inhibition of proteasome function induces apoptosis in oral squamous cell carcinoma cells. Clin. Cancer Res.6, 916–923 (2000). CASPubMed Google Scholar
Bogner, C. et al. Cycling B-CLL cells are highly susceptible to inhibition of the proteasome: involvement of p27, early D-type cyclins, Bax, and caspase-dependent and-independent pathways. Exp. Hematol.31, 218–225 (2003). ArticleCASPubMed Google Scholar
Hideshima, T. et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res.61, 3071–3076 (2001). CASPubMed Google Scholar
Guzman, M. L. et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc. Natl Acad. Sci. USA99, 16220–16225 (2002). This study shows the ability of proteasome inhibition to combine well with anthracycline therapy to target leukaemic cellsin vitroandin vivo, through NF-κB- and p53-related mechanisms. ArticleCASPubMedPubMed Central Google Scholar
Stirewalt, D. L. et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood97, 3589–3595 (2001). ArticleCASPubMed Google Scholar
Schenkein, D. Proteasome inhibitors in the treatment of B-cell malignancies. Clin. Lymphoma3, 49–55 (2002). ArticleCASPubMed Google Scholar
Masdehors, P. et al. Deregulation of the ubiquitin system and p53 proteolysis modify the apoptotic response in B-CLL lymphocytes. Blood96, 269–274 (2000). ArticleCASPubMed Google Scholar
Kordes, U., Krappmann, D., Heissmeyer, V., Ludwig, W. D. & Scheidereit, C. Transcription factor NF-κB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia14, 399–402 (2000). ArticleCASPubMed Google Scholar
Feinman, R. et al. Role of NF-κB in the rescue of multiple myeloma cells from glucocorticoid-induced apoptosis by bcl-2. Blood93, 3044–3052 (1999). ArticleCASPubMed Google Scholar
Ni, H. et al. Analysis of expression of nuclear factor κB (NF-κB) in multiple myeloma: downregulation of NF-κB induces apoptosis. Br. J. Haematol.115, 279–286 (2001). ArticleCASPubMed Google Scholar
Jeremias, I. et al. Inhibition of nuclear factor κB activation attenuates apoptosis resistance in lymphoid cells. Blood91, 4624–4631 (1998). This paper demonstrates that inhibition of NF-κB activity, either through proteasome inhibition or by mutant IκBα, increases the sensitivity of cells to apoptosis, including cells resistant to apoptosis, following treatment with various agents. ArticleCASPubMed Google Scholar
Bentires-Alj, M. et al. NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene22, 90–97 (2003). ArticleCASPubMed Google Scholar
Adams, J., Palombella, V. J. & Elliott, P. J. Proteasome inhibition: a new strategy in cancer treatment. Invest. New Drugs18, 109–121 (2000). ArticleCASPubMed Google Scholar
Almond, J. B. & Cohen, G. M. The proteasome: a novel target for cancer chemotherapy. Leukemia16, 433–443 (2002). ArticleCASPubMed Google Scholar
Figueiredo-Pereira, M. E., Chen, W. E., Li, J. & Johdo, O. The antitumor drug aclacinomycin A, which inhibits the degradation of ubiquitinated proteins, shows selectivity for the chymotrypsin-like activity of the bovine pituitary 20 S proteasome. J. Biol. Chem.271, 16455–16459 (1996). ArticleCASPubMed Google Scholar
Lum, R. T. et al. A new structural class of proteasome inhibitors that prevent NF-κB activation. Biochem. Pharmacol.55, 1391–1397 (1998). ArticleCASPubMed Google Scholar
Lum, R. T. et al. Selective inhibition of the chymotrypsin-like activity of the 20S proteasome by 5-methoxy-1-indanone dipeptide benzamides. Bioorg. Med. Chem. Lett.8, 209–214 (1998). ArticleCASPubMed Google Scholar
Wilk, S., Pereira, M. & Yu, B. Probing the specificity of the bovine pituitary multicatalytic proteinase complex by inhibitors, activators, and by chemical modification. Biomed. Biochim. Acta50, 471–478 (1991). CASPubMed Google Scholar
Orlowski, M., Cardozo, C. & Michaud, C. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry32, 1563–1572 (1993). ArticleCASPubMed Google Scholar
Meng, L., Kwok, B. H., Sin, N. & Crews, C. M. Eponemycin exerts its antitumor effect through the inhibition of proteasome function. Cancer Res.59, 2798–2801 (1999). CASPubMed Google Scholar
Kim, K. B., Myung, J., Sin, N. & Crews, C. M. Proteasome inhibition by the natural products epoxomicin and dihydroeponemycin: insights into specificity and potency. Bioorg. Med. Chem. Lett.9, 3335–3340 (1999). ArticleCASPubMed Google Scholar
Bogyo, M. et al. Covalent modification of the active site threonine of proteasomal β subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc. Natl Acad. Sci. USA94, 6629–6634 (1997). ArticleCASPubMedPubMed Central Google Scholar
Elliott, P. J., Zollner, T. M. & Bochncke, W. -H. Proteasome inhibition: a new anti-inflammatory strategy. J. Mol. Med.81, 235–245 (2003). ArticleCASPubMed Google Scholar
An, B., Goldfarb, R. H., Siman, R. & Dou, Q. P. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ.5, 1062–1075 (1998). ArticleCASPubMed Google Scholar
Adams, J. et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg. Med. Chem. Lett.8, 333–338 (1998). ArticleCASPubMed Google Scholar
Shah, I. M., Lees, K. R., Pien, C. P. & Elliott, P. J. Early clinical experience with the novel proteasome inhibitor PS-519. Br. J. Clin. Pharmacol.54, 269–276 (2002). ArticleCASPubMedPubMed Central Google Scholar
Andre, P. et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc. Natl Acad. Sci. USA95, 13120–13124 (1998). ArticleCASPubMedPubMed Central Google Scholar
Adams, J. et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res.59, 2615–2622 (1999). A key paper describing the selection, characteristics, and earlyin vitroandin vivostudies of PS-341, later named bortezomib. CASPubMed Google Scholar
Dietrich, C., Bartsch, T., Schanz, F., Oesch, F. & Wieser, R. J. p53-dependent cell cycle arrest induced by _N_-acetyl-L-leucinyl-L-leucinyl-L-norleucinal in platelet-derived growth factor-stimulated human fibroblasts. Proc. Natl Acad. Sci. USA93, 10815–10819 (1996). ArticleCASPubMedPubMed Central Google Scholar
Lopes, U. G., Erhardt, P., Yao, R. & Cooper, G. M. p53-dependent induction of apoptosis by proteasome inhibitors. J. Biol. Chem.272, 12893–12896 (1997). ArticleCASPubMed Google Scholar
Ling, Y. H. et al. PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2-M phase arrest and apoptosis. Mol. Cancer Ther.1, 841–849 (2002). CASPubMed Google Scholar
Dou, Q. P., McGuire, T. F., Peng, Y. & An, B. Proteasome inhibition leads to significant reduction of Bcr–Abl expression and subsequent induction of apoptosis in K562 human chronic myelogenous leukemia cells. J. Pharmacol. Exp. Ther.289, 781–790 (1999). CASPubMed Google Scholar
Yu, C. L. & Burakoff, S. J. Involvement of proteasomes in regulating Jak–STAT pathways upon interleukin-2 stimulation. J. Biol. Chem.272, 14017–14020 (1997). ArticleCASPubMed Google Scholar
Callus, B. A. & Mathey-Prevot, B. Interleukin-3-induced activation of the JAK/STAT pathway is prolonged by proteasome inhibitors. Blood91, 3182–3192 (1998). ArticleCASPubMed Google Scholar
Pasquini, L. A., Paez, P. M., Moreno, M. A., Pasquini, J. M. & Soto, E. F. Inhibition of the proteasome by lactacystin enhances oligodendroglial cell differentiation. J. Neurosci.23, 4635–4644 (2003). ArticleCASPubMedPubMed Central Google Scholar
Shah, S. A. et al. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J. Cell Biochem.82, 110–122 (2001). ArticleCASPubMed Google Scholar
Russo, S. M. et al. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-κB. Int. J. Radiat. Oncol. Biol. Phys.50, 183–193 (2001). This paper demonstrates the ability of bortezomib to enhance the sensitivity of neoplastic cells to radiation therapyin vitroandin vivoin a manner that is associated with the inhibition of radiation-induced NF-κB activation. ArticleCASPubMed Google Scholar
Cusack, J. C. Jr. et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res.61, 3535–3540 (2001). A demonstration of the ability of bortezomib to act in combination with conventional chemotherapy in solid tumour cellsin vitroandin vivo. This paper also demonstrates the ability of bortezomib to inhibit the NF-κB activation induced by SN-38. CASPubMed Google Scholar
Ma, M. H. et al. The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin. Cancer Res.9, 1136–1144 (2003). CASPubMed Google Scholar
Lenz, H. J. Clinical update: proteasome inhibitors in solid tumors. Cancer Treat. Rev.29(Suppl 1), 41–48 (2003). ArticleCASPubMed Google Scholar
Chauhan, D. et al. Blockade of Hsp27 overcomes bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res.63, 6174–6177 (2003). CASPubMed Google Scholar
Chandra, J. et al. Proteasome inhibitors induce apoptosis in glucocorticoid-resistant chronic lymphocytic leukemic lymphocytes. Blood92, 4220–4229 (1998). ArticleCASPubMed Google Scholar
Gatto, S. et al. The proteasome inhibitor PS-341 inhibits growth and induces apoptosis in Bcr/Abl-positive cell lines sensitive and resistant to imatinib mesylate. Haematologica88, 853–863 (2003). CASPubMed Google Scholar
Hideshima, T. et al. NF-kB as a therapeutic target in multiple myeloma. J. Biol. Chem.277, 16639–16647 (2002). ArticleCASPubMed Google Scholar
Mitsiades, N. et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc. Natl Acad. Sci. USA99, 14374–14379 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hideshima, T. et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood101, 1530–1534 (2003). ArticleCASPubMed Google Scholar
LeBlanc, R. et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res.62, 4996–5000 (2002). CASPubMed Google Scholar
Sunwoo, J. B. et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-κB, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin. Cancer Res.7, 1419–1428 (2001). CASPubMed Google Scholar
Teicher, B. A., Ara, G., Herbst, R., Palombella, V. J. & Adams, J. The proteasome inhibitor PS-341 in cancer therapy. Clin. Cancer Res.5, 2638–2645 (1999). CASPubMed Google Scholar
Wang, C. Y., Cusack, J. C. J., Liu, R. & Baldwin, A. S. Jr. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nature Med.5, 412–417 (1999). ArticleCASPubMed Google Scholar
Mitsiades, N. et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood101, 2377–2380 (2003). This paper demonstrates the synergistic activity of bortezomib used in combination with DNA-damaging agents in multiple myeloma cells, as well as the ability of bortezomib to remove cell-adhesion-mediated drug resistance. Bortezomib is also shown to downregulate multiple DNA-repair proteins. ArticleCASPubMed Google Scholar
Bold, R. J., Virudachalam, S. & McConkey, D. J. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J. Surg. Res.100, 11–17 (2001). ArticleCASPubMed Google Scholar
Aghajanian, C. et al. A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin. Cancer Res.8, 2505–2511 (2002). CASPubMed Google Scholar
Orlowski, R. Z. et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J. Clin. Oncol.20, 4420–4427 (2002). One of two key Phase I clinical trials of bortezomib. This was a dose-ranging study in patients with advanced haematological malignancies, including multiple myeloma. The study demonstrated patient responses and acceptable toxicities and, in conjunction with reference 125, helped define the dose for the Phase II trials. ArticleCASPubMed Google Scholar
Richardson, P. G. et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med.348, 2609–2617 (2003). The key Phase II trial that led to the approval of the first proteasome inhibitor for the treatment of patients with multiple myeloma. ArticleCASPubMed Google Scholar
Read, M. A. et al. The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity2, 493–506 (1995). ArticleCASPubMed Google Scholar
Nefedova, Y., Landowski, T. H. & Dalton, W. S. Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia17, 1175–1182 (2003). ArticleCASPubMed Google Scholar
Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A. & Dalton, W. S. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood93, 1658–1667 (1999). ArticleCASPubMed Google Scholar
Grigorieva, I., Thomas, X. & Epstein, J. The bone marrow stromal environment is a major factor in myeloma cell resistance to dexamethasone. Exp. Hematol.26, 597–603 (1998). CASPubMed Google Scholar
Vacca, A. et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood93, 3064–3073 (1999). ArticleCASPubMed Google Scholar
Oikawa, T. et al. The proteasome is involved in angiogenesis. Biochem. Biophys. Res. Commun.246, 243–248 (1998). ArticleCASPubMed Google Scholar
Mezquita, J., Mezquita, B., Pau, M. & Mezquita, C. Down-regulation of Flt-1 gene expression by the proteasome inhibitor MG262. J. Cell Biochem.89, 1138–1147 (2003). ArticleCASPubMed Google Scholar
Bladé, J. et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br. J. Haematol.102, 1115–1123 (1998). ArticlePubMed Google Scholar
Berenson, J. R. et al. Experience with long–term therapy using the proteasome inhibitor, bortezomib, in advanced multiple myeloma (MM). Proc. Am. Soc. Clin. Oncol.22, 710 (2003). Google Scholar
Orlowski, R. Z. et al. Phase I study of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with refractory hematologic malignancies. Blood102, 449a (2003). ArticleCAS Google Scholar
Yang, H. H. et al. A phase I/II trial of VELCADE™ and melphalan combination therapy (Vc+M) for patients with relapsed or refractory multiple myeloma (MM). Blood102, 235a (2004). Google Scholar
Richardson, P. G. et al. Peripheral neuropathy following bortezomib (VELCADE™, formerly PS–341) therapy in patients with advanced multiple myeloma (MM): characterization and reversibility. Blood102, 149a (2003). Google Scholar