A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation (original) (raw)

References

  1. AbouHaidar MG, Venkataraman S, Golshani A, Liu B, Ahmad T . Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc Natl Acad Sci USA 2014; 111: 14542–14547.
    Article CAS Google Scholar
  2. Jeck WR, Sharpless NE . Detecting and characterizing circular RNAs. Nat Biotechnol 2014; 32: 453–461.
    Article CAS Google Scholar
  3. Zheng LL, Li JH, Wu J, Sun WJ, Liu S, Wang ZL et al. deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res 2016; 44: D196–D202.
    Article CAS Google Scholar
  4. Song X, Zhang N, Han P, Moon BS, Lai RK, Wang K et al. Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res 2016; 44: e87.
    Article Google Scholar
  5. Liu YC, Li JR, Sun CH, Andrews E, Chao RF, Lin FM et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res 2016; 44: D209–D215.
    Article CAS Google Scholar
  6. Du WW, Fang L, Yang X, Sheng W, Yang BL, Seth A et al. The role of versican in modulating breast cancer cell self-renewal. Mol Cancer Res 2013; 11: 443–455.
    Article CAS Google Scholar
  7. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22: 256–264.
    Article Google Scholar
  8. Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y . Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 2016; 44: 1370–1383.
    Article CAS Google Scholar
  9. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH et al. Circular intronic long noncoding RNAs. Mol Cell 2013; 51: 792–806.
    Article CAS Google Scholar
  10. Panda AC, Grammatikakis I, Kim KM, De S, Martindale JL, Munk R et al. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res 2016; 45: 4021–4035.
    Article Google Scholar
  11. Chuang TJ, Wu CS, Chen CY, Hung LY, Chiang TW, Yang MY . NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic Acids Res 2016; 44: e29.
    Article Google Scholar
  12. Xie YZ, Yang F, Tan W, Li X, Jiao C, Huang R et al. The anti-cancer components of Ganoderma lucidum possesses cardiovascular protective effect by regulating circular RNA expression. Oncoscience 2016; 3: 203–207.
    PubMed PubMed Central Google Scholar
  13. Nair AA, Niu N, Tang X, Thompson KJ, Wang L, Kocher JP et al. Circular RNAs and their associations with breast cancer subtypes. Oncotarget 2016; 7: 80967–80979.
    PubMed PubMed Central Google Scholar
  14. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19: 141–157.
    Article CAS Google Scholar
  15. Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 2017; 24: 357–370.
    Article CAS Google Scholar
  16. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495: 384–388.
    Article CAS Google Scholar
  17. Yang W, Du WW, Li X, Yee AJ, Yang BB . Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 2016; 35: 3919–3931.
    Article CAS Google Scholar
  18. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993; 73: 1019–1030.
    Article CAS Google Scholar
  19. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO . Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 2012; 7: e30733.
    Article CAS Google Scholar
  20. Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 2011; 30: 4414–4422.
    Article CAS Google Scholar
  21. Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 2017; 38: 1402–1412.
    Article CAS Google Scholar
  22. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO . Cell-type specific features of circular RNA expression. PLoS Genet 2013; 9: e1003777.
    Article CAS Google Scholar
  23. Glazar P, Papavasileiou P, Rajewsky N . circBase: a database for circular RNAs. RNA 2014; 20: 1666–1670.
    Article CAS Google Scholar
  24. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495: 333–338.
    Article CAS Google Scholar
  25. Adwan H, Bauerle T, Najajreh Y, Elazer V, Golomb G, Berger MR . Decreased levels of osteopontin and bone sialoprotein II are correlated with reduced proliferation, colony formation, and migration of GFP-MDA-MB-231 cells. Int J Oncol 2004; 24: 1235–1244.
    CAS PubMed Google Scholar
  26. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB . Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 2016; 44: 2846–2858.
    Article Google Scholar
  27. Gearhart J, Pashos EE, Prasad MK . Pluripotency redux—advances in stem-cell research. N Engl J Med 2007; 357: 1469–1472.
    Article CAS Google Scholar
  28. Mateyak MK, Obaya AJ, Adachi S, Sedivy JM . Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 1997; 8: 1039–1048.
    CAS PubMed Google Scholar
  29. Oster SK, Marhin WW, Asker C, Facchini LM, Dion PA, Funa K et al. Myc is an essential negative regulator of platelet-derived growth factor beta receptor expression. Mol Cell Biol 2000; 20: 6768–6778.
    Article CAS Google Scholar
  30. von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 2003; 11: 1189–1200.
    Article CAS Google Scholar
  31. Li S, Jiang C, Pan J, Wang X, Jin J, Zhao L et al. Regulation of c-Myc protein stability by proteasome activator REGgamma. Cell Death Differ 2015; 22: 1000–1011.
    Article CAS Google Scholar
  32. Kemege KE, Hickey JM, Lovell S, Battaile KP, Zhang Y, Hefty PS . Ab initio structural modeling of and experimental validation for Chlamydia trachomatis protein CT296 reveal structural similarity to Fe(II) 2-oxoglutarate-dependent enzymes. J Bacteriol 2011; 193: 6517–6528.
    Article CAS Google Scholar
  33. Walia RR, Xue LC, Wilkins K, El-Manzalawy Y, Dobbs D, Honavar V . RNABindRPlus: a predictor that combines machine learning and sequence homology-based methods to improve the reliability of predicted RNA-binding residues in proteins. PLoS ONE 2014; 9: e97725.
    Article Google Scholar
  34. Wang L, Huang C, Yang MQ, Yang JY . BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Syst Biol 2010; 4 (Suppl 1): S3.
    Article Google Scholar
  35. Kumar M, Gromiha MM, Raghava GP . Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins 2008; 71: 189–194.
    Article CAS Google Scholar
  36. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M et al. Non-transcriptional control of DNA replication by c-Myc. Nature 2007; 448: 445–451.
    Article CAS Google Scholar
  37. Kim EJ, Kim SH, Jin X, Kim H . KCTD2, an adaptor of Cullin3 E3 ubiquitin ligase, suppresses gliomagenesis by destabilizing c-Myc. Cell Death Differ 2017; 24: 649–659.
    Article CAS Google Scholar
  38. Chen Y, Wu JJ, Huang L . Nanoparticles targeted with NGR motif deliver c-myc siRNA and doxorubicin for anticancer therapy. Mol Ther 2010; 18: 828–834.
    Article CAS Google Scholar
  39. Phesse TJ, Myant KB, Cole AM, Ridgway RA, Pearson H, Muncan V et al. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo. Cell Death Differ 2014; 21: 956–966.
    Article CAS Google Scholar
  40. Park SB, Seo KW, So AY, Seo MS, Yu KR, Kang SK et al. SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC. Cell Death Differ 2012; 19: 534–545.
    Article CAS Google Scholar
  41. Sabo A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 2014; 511: 488–492.
    Article CAS Google Scholar
  42. Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J et al. Reduced expression of MYC increases longevity and enhances healthspan. Cell 2015; 160: 477–488.
    Article CAS Google Scholar
  43. Couderc C, Boin A, Fuhrmann L, Vincent-Salomon A, Mandati V, Kieffer Y et al. AMOTL1 promotes breast cancer progression and is antagonized by merlin. Neoplasia 2016; 18: 10–24.
    Article CAS Google Scholar
  44. Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016; 37: 2602–2611.
    Article CAS Google Scholar
  45. Valdmanis PN, Kay MA . The expanding repertoire of circular RNAs. Mol Ther 2013; 21: 1112–1114.
    Article CAS Google Scholar
  46. Yang X, Du WW, Li H, Liu F, Khorshidi A, Rutnam ZJ et al. Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion. Nucleic Acids Res 2013; 41: 9688–9704.
    Article CAS Google Scholar
  47. Li H, Chang L, Du WW, Gupta S, Khorshidi A, Sefton M et al. Anti-microRNA-378a enhances wound healing process by upregulating integrin beta-3 and vimentin. Mol Ther 2014; 22: 1839–1850.
    Article CAS Google Scholar
  48. Li H, Gupta S, Du WW, Yang BB . MicroRNA-17 inhibits tumor growth by stimulating T-cell mediated host immune response. Oncoscience 2014; 1: 531–539.
    Article Google Scholar
  49. Shan SW, Lee DY, Deng Z, Shatseva T, Jeyapalan Z, Du WW et al. MicroRNA MiR-17 retards tissue growth and represses fibronectin expression. Nat Cell Biol 2009; 11: 1031–1038.
    Article CAS Google Scholar
  50. Rutnam ZJ, Du WW, Yang W, Yang X, Yang BB . The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat Commun 2014; 5: 2914.
    Article Google Scholar

Download references