A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation (original) (raw)
References
AbouHaidar MG, Venkataraman S, Golshani A, Liu B, Ahmad T . Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc Natl Acad Sci USA 2014; 111: 14542–14547. ArticleCAS Google Scholar
Jeck WR, Sharpless NE . Detecting and characterizing circular RNAs. Nat Biotechnol 2014; 32: 453–461. ArticleCAS Google Scholar
Zheng LL, Li JH, Wu J, Sun WJ, Liu S, Wang ZL et al. deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res 2016; 44: D196–D202. ArticleCAS Google Scholar
Song X, Zhang N, Han P, Moon BS, Lai RK, Wang K et al. Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res 2016; 44: e87. Article Google Scholar
Liu YC, Li JR, Sun CH, Andrews E, Chao RF, Lin FM et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res 2016; 44: D209–D215. ArticleCAS Google Scholar
Du WW, Fang L, Yang X, Sheng W, Yang BL, Seth A et al. The role of versican in modulating breast cancer cell self-renewal. Mol Cancer Res 2013; 11: 443–455. ArticleCAS Google Scholar
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22: 256–264. Article Google Scholar
Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y . Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 2016; 44: 1370–1383. ArticleCAS Google Scholar
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH et al. Circular intronic long noncoding RNAs. Mol Cell 2013; 51: 792–806. ArticleCAS Google Scholar
Panda AC, Grammatikakis I, Kim KM, De S, Martindale JL, Munk R et al. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res 2016; 45: 4021–4035. Article Google Scholar
Chuang TJ, Wu CS, Chen CY, Hung LY, Chiang TW, Yang MY . NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic Acids Res 2016; 44: e29. Article Google Scholar
Xie YZ, Yang F, Tan W, Li X, Jiao C, Huang R et al. The anti-cancer components of Ganoderma lucidum possesses cardiovascular protective effect by regulating circular RNA expression. Oncoscience 2016; 3: 203–207. PubMedPubMed Central Google Scholar
Nair AA, Niu N, Tang X, Thompson KJ, Wang L, Kocher JP et al. Circular RNAs and their associations with breast cancer subtypes. Oncotarget 2016; 7: 80967–80979. PubMedPubMed Central Google Scholar
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19: 141–157. ArticleCAS Google Scholar
Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 2017; 24: 357–370. ArticleCAS Google Scholar
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495: 384–388. ArticleCAS Google Scholar
Yang W, Du WW, Li X, Yee AJ, Yang BB . Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 2016; 35: 3919–3931. ArticleCAS Google Scholar
Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993; 73: 1019–1030. ArticleCAS Google Scholar
Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO . Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 2012; 7: e30733. ArticleCAS Google Scholar
Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 2011; 30: 4414–4422. ArticleCAS Google Scholar
Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 2017; 38: 1402–1412. ArticleCAS Google Scholar
Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO . Cell-type specific features of circular RNA expression. PLoS Genet 2013; 9: e1003777. ArticleCAS Google Scholar
Glazar P, Papavasileiou P, Rajewsky N . circBase: a database for circular RNAs. RNA 2014; 20: 1666–1670. ArticleCAS Google Scholar
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495: 333–338. ArticleCAS Google Scholar
Adwan H, Bauerle T, Najajreh Y, Elazer V, Golomb G, Berger MR . Decreased levels of osteopontin and bone sialoprotein II are correlated with reduced proliferation, colony formation, and migration of GFP-MDA-MB-231 cells. Int J Oncol 2004; 24: 1235–1244. CASPubMed Google Scholar
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB . Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 2016; 44: 2846–2858. Article Google Scholar
Gearhart J, Pashos EE, Prasad MK . Pluripotency redux—advances in stem-cell research. N Engl J Med 2007; 357: 1469–1472. ArticleCAS Google Scholar
Mateyak MK, Obaya AJ, Adachi S, Sedivy JM . Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 1997; 8: 1039–1048. CASPubMed Google Scholar
Oster SK, Marhin WW, Asker C, Facchini LM, Dion PA, Funa K et al. Myc is an essential negative regulator of platelet-derived growth factor beta receptor expression. Mol Cell Biol 2000; 20: 6768–6778. ArticleCAS Google Scholar
von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 2003; 11: 1189–1200. ArticleCAS Google Scholar
Li S, Jiang C, Pan J, Wang X, Jin J, Zhao L et al. Regulation of c-Myc protein stability by proteasome activator REGgamma. Cell Death Differ 2015; 22: 1000–1011. ArticleCAS Google Scholar
Kemege KE, Hickey JM, Lovell S, Battaile KP, Zhang Y, Hefty PS . Ab initio structural modeling of and experimental validation for Chlamydia trachomatis protein CT296 reveal structural similarity to Fe(II) 2-oxoglutarate-dependent enzymes. J Bacteriol 2011; 193: 6517–6528. ArticleCAS Google Scholar
Walia RR, Xue LC, Wilkins K, El-Manzalawy Y, Dobbs D, Honavar V . RNABindRPlus: a predictor that combines machine learning and sequence homology-based methods to improve the reliability of predicted RNA-binding residues in proteins. PLoS ONE 2014; 9: e97725. Article Google Scholar
Wang L, Huang C, Yang MQ, Yang JY . BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Syst Biol 2010; 4 (Suppl 1): S3. Article Google Scholar
Kumar M, Gromiha MM, Raghava GP . Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins 2008; 71: 189–194. ArticleCAS Google Scholar
Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M et al. Non-transcriptional control of DNA replication by c-Myc. Nature 2007; 448: 445–451. ArticleCAS Google Scholar
Kim EJ, Kim SH, Jin X, Kim H . KCTD2, an adaptor of Cullin3 E3 ubiquitin ligase, suppresses gliomagenesis by destabilizing c-Myc. Cell Death Differ 2017; 24: 649–659. ArticleCAS Google Scholar
Chen Y, Wu JJ, Huang L . Nanoparticles targeted with NGR motif deliver c-myc siRNA and doxorubicin for anticancer therapy. Mol Ther 2010; 18: 828–834. ArticleCAS Google Scholar
Phesse TJ, Myant KB, Cole AM, Ridgway RA, Pearson H, Muncan V et al. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo. Cell Death Differ 2014; 21: 956–966. ArticleCAS Google Scholar
Park SB, Seo KW, So AY, Seo MS, Yu KR, Kang SK et al. SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC. Cell Death Differ 2012; 19: 534–545. ArticleCAS Google Scholar
Sabo A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 2014; 511: 488–492. ArticleCAS Google Scholar
Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J et al. Reduced expression of MYC increases longevity and enhances healthspan. Cell 2015; 160: 477–488. ArticleCAS Google Scholar
Couderc C, Boin A, Fuhrmann L, Vincent-Salomon A, Mandati V, Kieffer Y et al. AMOTL1 promotes breast cancer progression and is antagonized by merlin. Neoplasia 2016; 18: 10–24. ArticleCAS Google Scholar
Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016; 37: 2602–2611. ArticleCAS Google Scholar
Valdmanis PN, Kay MA . The expanding repertoire of circular RNAs. Mol Ther 2013; 21: 1112–1114. ArticleCAS Google Scholar
Yang X, Du WW, Li H, Liu F, Khorshidi A, Rutnam ZJ et al. Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion. Nucleic Acids Res 2013; 41: 9688–9704. ArticleCAS Google Scholar
Li H, Chang L, Du WW, Gupta S, Khorshidi A, Sefton M et al. Anti-microRNA-378a enhances wound healing process by upregulating integrin beta-3 and vimentin. Mol Ther 2014; 22: 1839–1850. ArticleCAS Google Scholar
Li H, Gupta S, Du WW, Yang BB . MicroRNA-17 inhibits tumor growth by stimulating T-cell mediated host immune response. Oncoscience 2014; 1: 531–539. Article Google Scholar
Shan SW, Lee DY, Deng Z, Shatseva T, Jeyapalan Z, Du WW et al. MicroRNA MiR-17 retards tissue growth and represses fibronectin expression. Nat Cell Biol 2009; 11: 1031–1038. ArticleCAS Google Scholar
Rutnam ZJ, Du WW, Yang W, Yang X, Yang BB . The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat Commun 2014; 5: 2914. Article Google Scholar