Regulation of NF-κB signaling by the A20 deubiquitinase (original) (raw)
Hayden MS, Ghosh S . Shared principles in NF-κB signaling. Cell 2008; 132: 344–362. CASPubMed Google Scholar
Hayden MS, Ghosh S . Signaling to NF-κB. Genes Dev 2004; 18: 2195–2224. CASPubMed Google Scholar
Hacker H, Karin M . Regulation and function of IKK and IKK-related kinases. Sci STKE 2006; 2006: re13. PubMed Google Scholar
Sun SC, Ganchi PA, Ballard DW, Greene WC . NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 1993; 259: 1912–1915. CASPubMed Google Scholar
Hershko A, Ciechanover A . The ubiquitin system. Annu Rev Biochem 1998; 67: 425–479. CASPubMed Google Scholar
Bernassola F, Karin M, Ciechanover A, Melino G . The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 2008; 14: 10–21. CASPubMed Google Scholar
Ikeda F, Dikic I . Atypical ubiquitin chains: new molecular signals. ‘Protein modifications: beyond the usual suspects' review series. EMBO Rep 2008; 9: 536–542. CASPubMedPubMed Central Google Scholar
Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat Cell Biol 2009; 11: 123–132. CASPubMed Google Scholar
Ikeda F, Deribe YL, Skånland SS, Stieglitz B, Grabbe C, Franz-Wachtel M et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 2011; 471: 637–641. CASPubMedPubMed Central Google Scholar
Deng L, Wang C, Spencer E, Yang L, Braun A, You J et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103: 351–361. CASPubMed Google Scholar
Dynek JN, Goncharov T, Dueber EC, Fedorova AV, Izrael-Tomasevic A, Phu L et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 2010; 29: 4198–4209. CASPubMedPubMed Central Google Scholar
Matsumoto ML, Wickliffe KE, Dong KC, Yu C, Bosanac I, Bustos D et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 2010; 39: 477–484. CASPubMed Google Scholar
Chastagner P, Israel A, Brou C . AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS ONE 2008; 3: e2735. PubMedPubMed Central Google Scholar
Wertz IE, Dixit VM . Ubiquitin-mediated regulation of TNFR1 signaling. Cytokine Growth Factor Rev 2008; 19: 313–324. CASPubMed Google Scholar
O'Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT . Ubiquitination of RIP1 regulates an NF-κB-independent cell-death switch in TNF signaling. Curr Biol 2007; 17: 418–424. CASPubMedPubMed Central Google Scholar
Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 2011; 471: 591–596. CASPubMed Google Scholar
Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A et al. TAB2 and TAB3 actvate the NF-κB pathway through binding to polyubiquitin chains. Mol Cell 2004; 15: 535–548. CASPubMed Google Scholar
Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ . Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006; 22: 245–257. CASPubMed Google Scholar
Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ . TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001; 412: 346–351. CASPubMed Google Scholar
Akira S . Toll-like receptor signaling. J Biol Chem 2003; 278: 38105–38108. CASPubMed Google Scholar
Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X . Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 2002; 22: 7158–7167. CASPubMedPubMed Central Google Scholar
Reyes-Turcu FE, Ventii KH, Wilkinson KD . Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78: 363–397. CASPubMed Google Scholar
Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123: 773–786. CASPubMed Google Scholar
Ambroggio XI, Rees DC, Deshaies RJ . JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol 2004; 2: E2. PubMed Google Scholar
Komander D, Clague MJ, Urbe S . Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10: 550–563. CASPubMed Google Scholar
Harhaj EW, Dixit VM . Deubiquitinases in the regulation of NF-κB signaling. Cell Res 2011; 21: 22–39. CASPubMed Google Scholar
Sun SC . CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death Differ 2010; 17: 25–34. CASPubMed Google Scholar
Opipari AW Jr, Boguski MS, Dixit VM . The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 1990; 265: 14705–14708. CASPubMed Google Scholar
Krikos A, Laherty CD, Dixit VM . Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by κB elements. J Biol Chem 1992; 267: 17971–17976. CASPubMed Google Scholar
Laherty CD, Perkins ND, Dixit VM . Human T cell leukemia virus type I Tax and phorbol 12-myristate 13-acetate induce expression of the A20 zinc finger protein by distinct mechanisms involving nuclear factor κB. J Biol Chem 1993; 268: 5032–5039. CASPubMed Google Scholar
Opipari AW Jr, Hu HM, Yabkowitz R, Dixit VM . The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem 1992; 267: 12424–12427. CASPubMed Google Scholar
Jaattela M, Mouritzen H, Elling F, Bastholm L . A20 zinc finger protein inhibits TNF and IL-1 signaling. J Immunol 1996; 156: 1166–1173. CASPubMed Google Scholar
Song HY, Rothe M, Goeddel DV . The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation. Proc Natl Acad Sci USA 1996; 93: 6721–6725. CASPubMedPubMed Central Google Scholar
Heyninck K, de Valck D, Vanden Berghe W, van Criekinge W, Contreras R, Fiers W et al. The zinc finger protein A20 inhibits TNF-induced NF-κB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-κB-inhibiting protein ABIN. J Cell Biol 1999; 145: 1471–1482. CASPubMedPubMed Central Google Scholar
Heyninck K, Beyaert R . The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-κB activation at the level of TRAF6. FEBS Lett 1999; 442: 147–150. CASPubMed Google Scholar
Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 2000; 289: 2350–2354. CASPubMedPubMed Central Google Scholar
Evans PC Ovaa H, Hamon M, Kilshaw PJ, Hamm S, Bauer S et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J 2004; 378: 727–734. PubMed Google Scholar
Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L Seshagiri S et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 2004; 430: 694–699. CASPubMed Google Scholar
Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5: 1052–1060. CASPubMed Google Scholar
Shembade N, Ma A, Harhaj EW . Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010; 327: 1135–1139. CASPubMedPubMed Central Google Scholar
Bosanac I, Wertz IE, Pan B, Yu C, Kusam S, Lam C et al. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Mol Cell 2010; 40: 548–557. CASPubMed Google Scholar
Li L, Soetandyo N, Wang Q, Ye Y . The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim Biophys Acta 2009; 1793: 346–353. CASPubMed Google Scholar
Klinkenberg M, van Huffel S, Heyninck K, Beyaert R . Functional redundancy of the zinc fingers of A20 for inhibition of NF-κB activation and protein-protein interactions. FEBS Lett 2001; 498: 93–97. CASPubMed Google Scholar
Skaug B, Chen J, Du F, He J, Ma A, Chen ZJ . Direct, Noncatalytic Mechanism of IKK Inhibition by A20. Mol Cell 2011; 44: 559–571. CASPubMedPubMed Central Google Scholar
Tewari M, Wolf FW, Seldin MF, O'Shea KS, Dixit VM, Turka LA . Lymphoid expression and regulation of A20, an inhibitor of programmed cell death. J Immunol 1995; 154: 1699–1706. CASPubMed Google Scholar
Turer EE, Tavares R, Hitotsumatsu O, Advincula R, Lee BL, Shifrin N et al. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J Exp Med 2008; 205: 451–464. CASPubMedPubMed Central Google Scholar
Tavares RM, Turer EE, Liu CL, Advincula R, Scapini P, Rhee L et al. The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity. Immunity 2010; 33: 181–191. CASPubMedPubMed Central Google Scholar
Chu Y, Vahl JC, Kumar D, Heger K, Bertossi A, Wójtowicz E et al. B cells lacking the tumor suppressor TNFAIP3/A20 display impaired differentiation and hyperactivation and cause inflammation and autoimmunity in aged mice. Blood 2011; 117: 2227–2236. CASPubMed Google Scholar
Hovelmeyer N, Reissig S, Xuan NT, Adams-Quack P, Lukas D, Nikolaev A et al. A20 deficiency in B cells enhances B-cell proliferation and results in the development of autoantibodies. Eur J Immunol 2011; 41: 595–601. PubMed Google Scholar
Hammer GE, Turer EE, Taylor KE, Fang CJ, Advincula R, Oshima S et al. Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis. Nat Immunol 2011; 12: 1184–1193. CASPubMedPubMed Central Google Scholar
Kool M, van Loo G, Waelput W, de Prijck S, Muskens F, Sze M et al. The ubiquitin-editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. Immunity 2011; 35: 82–96. CASPubMed Google Scholar
Song XT, Evel-Kabler K, Rollins L, Aldrich M, Huang XF, Chen SY . A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression. Nat Med 2008; 14: 258–265. CASPubMedPubMed Central Google Scholar
Arsenescu R, Bruno ME, Rogier EW, Stefka AT, McMahan AE, Wright TB et al. Signature biomarkers in Crohn's disease: toward a molecular classification. Mucosal Immunol 2008; 1: 399–411. CASPubMed Google Scholar
Vereecke L, Sze M, Mc Guire C, Rogiers B, Chu Y, Schmidt-Supprian M et al. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J Exp Med 2010; 207: 1513–1523. CASPubMedPubMed Central Google Scholar
Kolodziej LE, Jacques P, Maelfait J, Verheugen E, Kool M, Sze M et al. TNFAIP3 maintains intestinal barrier function and supports epithelial cell tight junctions. PLoS ONE 2011; 6: e26352. CASPubMedPubMed Central Google Scholar
Matmati M, Jacques P, Maelfait J, Verheugen E, Kool M, Sze M et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet 2011; 43: 908–912. CASPubMed Google Scholar
Raychaudhuri S, Remmers EF, Lee AT, Hackett R, Guiducci C, Burtt NP et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet 2008; 40: 1216–1223. CASPubMedPubMed Central Google Scholar
Lippens S, Lefebvre S, Gilbert B, Sze M, Devos M, Verhelst K et al. Keratinocyte-specific ablation of the NF-κB regulatory protein A20 (TNFAIP3) reveals a role in the control of epidermal homeostasis. Cell Death Differ. 2011; 18: 1845–1853. CASPubMedPubMed Central Google Scholar
Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Núñez G et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. EMBO J 2008; 27: 373–383. CASPubMed Google Scholar
Hitotsumatsu O, Ahmad RC, Tavares R, Wang M, Philpott D, Turer EE et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 2008; 28: 381–390. CASPubMedPubMed Central Google Scholar
Blonska M, Lin X . NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res 2011; 21: 55–70. CASPubMed Google Scholar
Duwel M, Welteke V, Oeckinghaus A, Baens M, Kloo B, Ferch U et al. A20 negatively regulates T cell receptor signaling to NF-κB by cleaving Malt1 ubiquitin chains. J Immunol 2009; 182: 7718–7728. PubMed Google Scholar
Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, Staal J et al. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nat Immunol 2008; 9: 263–271. CASPubMed Google Scholar
Komander D, Reyes-Turcu F, Licchesi JD, Odenwaelder P, Wilkinson KD, Barford D . Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 2009; 10: 466–473. CASPubMedPubMed Central Google Scholar
Gachon F, Peleraux A, Thebault S, Dick J, Lemasson I, Devaux C et al. CREB-2, a cellular CRE-dependent transcription repressor, functions in association with Tax as an activator of the human T-cell leukemia virus type 1 promoter. J Virol 1998; 72: 8332–8337. CASPubMedPubMed Central Google Scholar
de Valck D, Jin DY, Heyninck K, van de Craen M, Contreras R, Fiers W et al. The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene 1999; 18: 4182–4190. CASPubMed Google Scholar
Ling L, Goeddel DV . T6BP, a TRAF6-interacting protein involved in IL-1 signaling. Proc Natl Acad Sci USA 2000; 97: 9567–9572. CASPubMedPubMed Central Google Scholar
Iha H, Peloponese JM, Verstrepen L, Zapart G, Ikeda F, Smith CD et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J 2008; 27: 629–641. CASPubMedPubMed Central Google Scholar
Shembade N, Harhaj NS, Liebl DJ, Harhaj EW . Essential role for TAX1BP1 in the termination of TNF-α-, IL-1- and LPS-mediated NF-κB and JNK signaling. EMBO J 2007; 26: 3910–3922. CASPubMedPubMed Central Google Scholar
Kitching R, Wong MJ, Koehler D, Burger AM, Landberg G, Gish G et al. The RING-H2 protein RNF11 is differentially expressed in breast tumours and interacts with HECT-type E3 ligases. Biochim Biophys Acta 2003; 1639: 104–112. CASPubMed Google Scholar
Sudol M, Chen HI, Bougeret C, Einbond A, Bork P . Characterization of a novel protein-binding module—the WW domain. FEBS Lett 1995; 369: 67–71. CASPubMed Google Scholar
Shembade N, Harhaj NS, Parvatiyar K, Copeland NG, Jenkins NA, Matesic LE et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol 2008; 9: 254–262. CASPubMed Google Scholar
Matesic LE, Copeland NG, Jenkins NA . Itchy mice: the identification of a new pathway for the development of autoimmunity. Curr Top Microbiol Immunol 2008; 321: 185–200. CASPubMed Google Scholar
Subramaniam V, Li H, Wong M, Kitching R, Attisano L, Wrana J et al. The RING-H2 protein RNF11 is overexpressed in breast cancer and is a target of Smurf2 E3 ligase. Br J Cancer 2003; 89: 1538–1544. CASPubMedPubMed Central Google Scholar
Azmi P, Seth A . RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation. Eur J Cancer 2005; 41: 2549–2560. CASPubMed Google Scholar
Santonico E, Belleudi F, Panni S, Torrisi MR, Cesareni G, Castagnoli L . Multiple modification and protein interaction signals drive the Ring finger protein 11 (RNF11) E3 ligase to the endosomal compartment. Oncogene 2010; 29: 5604–5618. CASPubMed Google Scholar
Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A et al. Functional proteomics mapping of a human signaling pathway. Genome Res 2004; 14: 1324–1332. CASPubMedPubMed Central Google Scholar
Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW . The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-κB signalling. EMBO J 2009; 28: 513–522. CASPubMedPubMed Central Google Scholar
Heyninck K, Kreike MM, Beyaert R . Structure-function analysis of the A20-binding inhibitor of NF-κB activation, ABIN-1. FEBS Lett 2003; 536: 135–140. CASPubMed Google Scholar
Mauro C, Pacifico F, Lavorgna A, Mellone S, Iannetti A . ABIN-1 binds to NEMO/IKKγ and co-operates with A20 in inhibiting NF-κB. J Biol Chem 2006; 281: 18482–18488. CASPubMed Google Scholar
Oshima S, Turer EE, Callahan JA, Chai S, Advincula R, Barrera J et al. ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development. Nature 2009; 457: 906–909. CASPubMed Google Scholar
Zhou J, Wu R, High AA, Slaughter CA, Finkelstein D, Rehg JE et al. A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein beta activation and protects from inflammatory disease. Proc Natl Acad Sci USA 2011; 108: E998–E1006. CASPubMedPubMed Central Google Scholar
Wagner S, Carpentier I, Rogov V, Kreike M, Ikeda F, Löhr F et al. Ubiquitin binding mediates the NF-κB inhibitory potential of ABIN proteins. Oncogene 2008; 27: 3739–3745. CASPubMed Google Scholar
Nanda SK, Venigalla RK, Ordureau A, Patterson-Kane JC, Powell DW, Toth R et al. Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. J Exp Med 2011; 208: 1215–1228. CASPubMedPubMed Central Google Scholar
Vincenz C, Dixit VM . 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J Biol Chem 1996; 271: 20029–20034. CASPubMed Google Scholar
de Valck D, Heyninck K, van Criekinge W, Vandenabeele P, Fiers W, Beyaert R . A20 inhibits NF-κB activation independently of binding to 14-3-3 proteins. Biochem Biophys Res Commun 1997; 238: 590–594. CASPubMed Google Scholar
Bohgaki M, Tsukiyama T, Nakajima A, Maruyama S, Watanabe M, Koike T et al. Involvement of Ymer in suppression of NF-κB activation by regulated interaction with lysine-63-linked polyubiquitin chain. Biochim Biophys Acta 2008; 1783: 826–837. CASPubMed Google Scholar
Shembade N, Pujari R, Harhaj NS, Abbott DW, Harhaj EW . The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylating the regulatory molecule TAX1BP1. Nat Immunol 2011; 12: 834–843. CASPubMedPubMed Central Google Scholar
Lawrence T, Bebien M, Liu GY, Nizet V, Karin M . IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 2005; 434: 1138–1143. CASPubMed Google Scholar
Li Q, Lu Q, Bottero V, Estepa G, Morrison L, Mercurio F et al. Enhanced NF-κB activation and cellular function in macrophages lacking IκB kinase 1 (IKK1). Proc Natl Acad Sci USA 2005; 102: 12425–12430. CASPubMedPubMed Central Google Scholar
Hutti JE, Abbott DW, Zhou AY, Sprott KM, Asara JM, Hahn WC . IKKβ Phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-κB pathway. Mol Cell Biol 2007; 27: 7451–7461. CASPubMedPubMed Central Google Scholar
Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 2009; 459: 717–721. CASPubMedPubMed Central Google Scholar
Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 2009; 459: 712–716. CASPubMed Google Scholar
Honma K, Tsuzuki S, Nakagawa M, Tagawa H, Nakamura S, Morishima Y et al. TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 2009; 114: 246–275. Google Scholar
Chanudet E, Huang Y, Ichimura K, Dong G, Hamoudi RA, Radford J et al. A20 is targeted by promoter methylation, deletion and inactivating mutation in MALT lymphoma. Leukemia 2010; 24: 483–487. CASPubMed Google Scholar
Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 2009; 206: 981–989. CASPubMedPubMed Central Google Scholar
Braun FC, Grabarczyk P, Möbs M, Braun FK, Eberle J, Beyer M et al. Tumor suppressor TNFAIP3 (A20) is frequently deleted in Sezary syndrome. Leukemia 2011; 25: 1494–1501. CASPubMed Google Scholar
Ferch U, Kloo B, Gewies A, Pfänder V, Düwel M, Peschel C et al. Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2009; 206: 2313–2320. CASPubMedPubMed Central Google Scholar
Vendrell JA, Ghayad S, Ben-Larbi S, Dumontet C, Mechti N, Cohen PA . A20/TNFAIP3, a new estrogen-regulated gene that confers tamoxifen resistance in breast cancer cells. Oncogene 2007; 26: 4656–4667. CASPubMed Google Scholar
Guo Q, Dong H, Liu X, Wang C, Liu N, Zhang J et al. A20 is overexpressed in glioma cells and may serve as a potential therapeutic target. Expert Opin Ther Targets 2009; 13: 733–741. CASPubMed Google Scholar
Hjelmeland AB, Wu Q, Wickman S, Eyler C, Heddleston J, Shi Q et al. Targeting A20 decreases glioma stem cell survival and tumor growth. PLoS Biol 2010; 8: e1000319. PubMedPubMed Central Google Scholar
Ahmed N, Zeng M, Sinha I, Polin L, Wei WZ, Rathinam C et al. The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation. Nat Immunol 2011; 12: 1176–1183. CASPubMedPubMed Central Google Scholar