Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia (original) (raw)
Busslinger M . Transcriptional control of early B cell development. Annu Rev Immunol 2004; 22: 55–79. ArticleCASPubMed Google Scholar
Mikkola I, Heavey B, Horcher M, Busslinger M . Reversion of B cell commitment upon loss of Pax5 expression. Science 2002; 297: 110–113. ArticleCASPubMed Google Scholar
Nutt SL, Eberhard D, Horcher M, Rolink AG, Busslinger M . Pax5 determines the identity of B cells from the beginning to the end of B-lymphopoiesis. Int Rev Immunol 2001; 20: 65–82. ArticleCASPubMed Google Scholar
Nutt SL, Heavey B, Rolink AG, Busslinger M . Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999; 401: 556–562. ArticleCASPubMed Google Scholar
Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, Busslinger M . Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 2006; 24: 269–281. ArticleCASPubMed Google Scholar
Schebesta M, Heavey B, Busslinger M . Transcriptional control of B-cell development. Curr Opin Immunol 2002; 14: 216–223. ArticleCASPubMed Google Scholar
Busslinger M, Klix N, Pfeffer P, Graninger PG, Kozmik Z . Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc Natl Acad Sci USA 1996; 93: 6129–6134. ArticleCASPubMedPubMed Central Google Scholar
Iida S, Rao PH, Nallasivam P, Hibshoosh H, Butler M, Louie DC et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood 1996; 88: 4110–4117. CASPubMed Google Scholar
Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764. ArticleCASPubMed Google Scholar
Cazzaniga G, Daniotti M, Tosi S, Giudici G, Aloisi A, Pogliani E et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res 2001; 61: 4666–4670. CASPubMed Google Scholar
Strehl S, Konig M, Dworzak MN, Kalwak K, Haas OA . PAX5/ETV6 fusion defines cytogenetic entity dic(9;12)(p13;p13). Leukemia 2003; 17: 1121–1123. ArticleCASPubMed Google Scholar
Bousquet M, Broccardo C, Quelen C, Meggetto F, Kuhlein E, Delsol G et al. A novel PAX5-ELN fusion protein identified in B-cell acute lymphoblastic leukemia acts as a dominant negative on wild-type PAX5. Blood 2007; 109: 3417–3423. ArticleCASPubMed Google Scholar
Nebral K, Konig M, Harder L, Siebert R, Haas OA, Strehl S . Identification of PML as novel PAX5 fusion partner in childhood acute lymphoblastic leukaemia. Br J Haematol 2007; 139: 269–274. ArticleCASPubMed Google Scholar
Kawamata N, Ogawa S, Zimmermann M, Sanada M, Hemminki K, Yamatomo G et al. Rearrangement and deletion of the PAX5 gene in pediatric acute B-cell lineage lymphoblastic leukemia. ASH Annu Meet Abstr 2007; 110: 981. Google Scholar
Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007; 370: 240–250. ArticleCASPubMed Google Scholar
Konig M, Reichel M, Marschalek R, Haas OA, Strehl S . A highly specific and sensitive fluorescence in situ hybridization assay for the detection of t(4;11)(q21;q23) and concurrent submicroscopic deletions in acute leukaemias. Br J Haematol 2002; 116: 758–764. ArticleCASPubMed Google Scholar
Ayres JA, Shum L, Akarsu AN, Dashner R, Takahashi K, Ikura T et al. DACH: genomic characterization, evaluation as a candidate for postaxial polydactyly type A2, and developmental expression pattern of the mouse homologue. Genomics 2001; 77: 18–26. ArticleCASPubMed Google Scholar
Baker SJ, Rane SG, Reddy EP . Hematopoietic cytokine receptor signaling. Oncogene 2007; 26: 6724–6737. ArticleCASPubMed Google Scholar
Murray PJ . The JAK-STAT signaling pathway: input and output integration. J Immunol 2007; 178: 2623–2629. ArticleCASPubMed Google Scholar
Levine RL, Pardanani A, Tefferi A, Gilliland DG . Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer 2007; 7: 673–683. ArticleCASPubMed Google Scholar
Ihle JN, Gilliland DG . Jak2: normal function and role in hematopoietic disorders. Curr Opin Genet Dev 2007; 17: 8–14. ArticleCASPubMed Google Scholar
Poitras JL, Cin PD, Aster JC, Deangelo DJ, Morton CC . Novel SSBP2-JAK2 fusion gene resulting from a t(5;9)(q14.1;p24.1) in pre-B acute lymphocytic leukemia. Genes Chromosomes Cancer 2008; 47: 884–889. ArticleCASPubMed Google Scholar
Schwaller J, Frantsve J, Aster J, Williams IR, Tomasson MH, Ross TS et al. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J 1998; 17: 5321–5333. ArticleCASPubMedPubMed Central Google Scholar
Kovac CR, Emelyanov A, Singh M, Ashouian N, Birshtein BK . BSAP (Pax5)-importin alpha 1 (Rch1) interaction identifies a nuclear localization sequence. J Biol Chem 2000; 275: 16752–16757. ArticleCASPubMed Google Scholar
McCullagh P, Chaplin T, Meerabux J, Grenzelias D, Lillington D, Poulsom R et al. The cloning, mapping and expression of a novel gene, BRL, related to the AF10 leukaemia gene. Oncogene 1999; 18: 7442–7452. ArticleCASPubMed Google Scholar
Chaplin T, Bernard O, Beverloo HB, Saha V, Hagemeijer A, Berger R et al. The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. Blood 1995; 86: 2073–2076. CASPubMed Google Scholar
Prasad R, Leshkowitz D, Gu Y, Alder H, Nakamura T, Saito H et al. Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemia. Proc Natl Acad Sci USA 1994; 91: 8107–8111. ArticleCASPubMedPubMed Central Google Scholar
Ruthenburg AJ, Li H, Patel DJ, Allis CD . Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 2007; 8: 983–994. ArticleCASPubMedPubMed Central Google Scholar
Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ . How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 2007; 14: 1025–1040. ArticleCASPubMedPubMed Central Google Scholar
Arai S, Matsushita A, Du K, Yagi K, Okazaki Y, Kurokawa R . Novel homeodomain-interacting protein kinase family member, HIPK4, phosphorylates human p53 at serine 9. FEBS Lett 2007; 581: 5649–5657. ArticleCASPubMed Google Scholar
Kim YH, Choi CY, Lee SJ, Conti MA, Kim Y . Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J Biol Chem 1998; 273: 25875–25879. ArticleCASPubMed Google Scholar
Aikawa Y, Nguyen LA, Isono K, Takakura N, Tagata Y, Schmitz ML et al. Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation. EMBO J 2006; 25: 3955–3965. ArticleCASPubMedPubMed Central Google Scholar
Ecsedy JA, Michaelson JS, Leder P . Homeodomain-interacting protein kinase 1 modulates Daxx localization, phosphorylation, and transcriptional activity. Mol Cell Biol 2003; 23: 950–960. ArticleCASPubMedPubMed Central Google Scholar
Kondo S, Lu Y, Debbas M, Lin AW, Sarosi I, Itie A et al. Characterization of cells and gene-targeted mice deficient for the p53-binding kinase homeodomain-interacting protein kinase 1 (HIPK1). Proc Natl Acad Sci USA 2003; 100: 5431–5436. ArticleCASPubMedPubMed Central Google Scholar
Li X, Zhang R, Luo D, Park SJ, Wang Q, Kim Y et al. Tumor necrosis factor alpha-induced desumoylation and cytoplasmic translocation of homeodomain-interacting protein kinase 1 are critical for apoptosis signal-regulating kinase 1-JNK/p38 activation. J Biol Chem 2005; 280: 15061–15070. ArticleCASPubMed Google Scholar
Rochat-Steiner V, Becker K, Micheau O, Schneider P, Burns K, Tschopp J . FIST/HIPK3: a Fas/FADD-interacting serine/threonine kinase that induces FADD phosphorylation and inhibits fas-mediated Jun NH(2)-terminal kinase activation. J Exp Med 2000; 192: 1165–1174. ArticleCASPubMedPubMed Central Google Scholar
Chen R, Amoui M, Zhang Z, Mardon G . Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 1997; 91: 893–903. ArticleCASPubMed Google Scholar
Davis RJ, Shen W, Heanue TA, Mardon G . Mouse Dach, a homologue of Drosophila dachshund, is expressed in the developing retina, brain and limbs. Dev Genes Evol 1999; 209: 526–536. ArticleCASPubMed Google Scholar
Kozmik Z, Pfeffer P, Kralova J, Paces J, Paces V, Kalousova A et al. Molecular cloning and expression of the human and mouse homologues of the Drosophila dachshund gene. Dev Genes Evol 1999; 209: 537–545. ArticleCASPubMed Google Scholar
Wawersik S, Maas RL . Vertebrate eye development as modeled in Drosophila. Hum Mol Genet 2000; 9: 917–925. ArticleCASPubMed Google Scholar
Hanson IM . Mammalian homologues of the Drosophila eye specification genes. Semin Cell Dev Biol 2001; 12: 475–484. ArticleCASPubMed Google Scholar
Sunde JS, Donninger H, Wu K, Johnson ME, Pestell RG, Rose GS et al. Expression profiling identifies altered expression of genes that contribute to the inhibition of transforming growth factor-beta signaling in ovarian cancer. Cancer Res 2006; 66: 8404–8412. ArticleCASPubMed Google Scholar
Wu K, Yang Y, Wang C, Davoli MA, D'Amico M, Li A et al. DACH1 inhibits transforming growth factor-beta signaling through binding Smad4. J Biol Chem 2003; 278: 51673–51684. ArticleCASPubMed Google Scholar
Wu K, Liu M, Li A, Donninger H, Rao M, Jiao X et al. Cell fate determination factor DACH1 inhibits c-Jun-induced contact-independent growth. Mol Biol Cell 2007; 18: 755–767. ArticleCASPubMedPubMed Central Google Scholar
Hallberg E, Wozniak RW, Blobel G . An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J Cell Biol 1993; 122: 513–521. ArticleCASPubMed Google Scholar
Gerace L, Ottaviano Y, Kondor-Koch C . Identification of a major polypeptide of the nuclear pore complex. J Cell Biol 1982; 95: 826–837. ArticleCASPubMed Google Scholar
Antonin W, Franz C, Haselmann U, Antony C, Mattaj IW . The integral membrane nucleoporin pom121 functionally links nuclear pore complex assembly and nuclear envelope formation. Mol Cell 2005; 17: 83–92. ArticleCASPubMed Google Scholar
Stavru F, Nautrup-Pedersen G, Cordes VC, Gorlich D . Nuclear pore complex assembly and maintenance in POM121- and gp210-deficient cells. J Cell Biol 2006; 173: 477–483. ArticleCASPubMedPubMed Central Google Scholar
Lusk CP, Blobel G, King MC . Highway to the inner nuclear membrane: rules for the road. Nat Rev Mol Cell Biol 2007; 8: 414–420. ArticleCASPubMed Google Scholar
Romana SP, Radford-Weiss I, Ben Abdelali R, Schluth C, Petit A, Dastugue N et al. NUP98 rearrangements in hematopoietic malignancies: a study of the Groupe Francophone de Cytogenetique Hematologique. Leukemia 2006; 20: 696–706. ArticleCASPubMed Google Scholar
Slape C, Aplan PD . The role of NUP98 gene fusions in hematologic malignancy. Leuk Lymphoma 2004; 45: 1341–1350. ArticleCASPubMed Google Scholar
Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004; 36: 1084–1089. ArticleCASPubMed Google Scholar
Soekarman D, von Lindern M, Daenen S, de Jong B, Fonatsch C, Heinze B et al. The translocation (6;9) (p23;q34) shows consistent rearrangement of two genes and defines a myeloproliferative disorder with specific clinical features. Blood 1992; 79: 2990–2997. CASPubMed Google Scholar
von Lindern M, Breems D, van Baal S, Adriaansen H, Grosveld G . Characterization of the translocation breakpoint sequences of two DEK-CAN fusion genes present in t(6;9) acute myeloid leukemia and a SET-CAN fusion gene found in a case of acute undifferentiated leukemia. Genes Chromosomes Cancer 1992; 5: 227–234. ArticleCASPubMed Google Scholar
Cobaleda C, Schebesta A, Delogu A, Busslinger M . Pax5: the guardian of B cell identity and function. Nat Immunol 2007; 8: 463–470. ArticleCASPubMed Google Scholar
Fazio G, Palmi C, Rolink A, Biondi A, Cazzaniga G . PAX5/TEL acts as a transcriptional repressor causing down-modulation of CD19, enhances migration to CXCL12, and confers survival advantage in pre-BI cells. Cancer Res 2008; 68: 181–189. ArticleCASPubMed Google Scholar