Alvarez JV, Frank DA . (2004). Genome-wide analysis of STAT target genes. Cancer Biol Ther3: 1045–1050. CASPubMed Google Scholar
Barry SC, Korpelainen E, Sun Q, Stomski FC, Moretti PA, Wakao H et al. 1997. Roles of the N and C terminal domains of the interleukin-3 receptor alpha chain in receptor function. Blood89: 842–852. CASPubMed Google Scholar
Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. (2005). Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet365: 1054–1061. ArticleCASPubMed Google Scholar
Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA et al. (1999). Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia13: 1109–1166. CASPubMed Google Scholar
Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell JE . (1996). Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc Natl Acad Sci USA93: 7673–7678. CASPubMedPubMed Central Google Scholar
Caldenhoven E, van Dijk T, Raaijmakers JA, Lammers JW, Koenderman L, De Groot RP . (1995). Activation of the STAT3/acute phase response factor transcription factor by interleukin-5. J Biol Chem270: 25778–25784. CASPubMed Google Scholar
Cao X, Tay A, Guy GR, Tan YH . (1996). Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol Cell Biol16: 1595–1603. CASPubMedPubMed Central Google Scholar
Carlesso N, Frank DA, Griffin JD . (1996). Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med183: 811–820. CASPubMed Google Scholar
Chaturvedi P, Reddy MV, Reddy EP . (1998). Src kinases and not JAKs activate STATs during IL-3 induced myeloid cell proliferation. Oncogene16: 1749–1758. CASPubMed Google Scholar
Chaturvedi P, Sharma S, Reddy EP . (1997). Abrogation of interleukin-3 dependence of myeloid cells by the v-src oncogene requires SH2 and SH3 domains which specify activation of STATs. Mol Cell Biol17: 3295–3304. CASPubMedPubMed Central Google Scholar
Chin YE, Kitagawa M, Su WC, You ZH, Iwamoto Y, Fu XY . (1996). Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science272: 219–222. Google Scholar
Colamonici O, Yan H, Domanski P, Handa R, Smalley D et al. (1994a). Direct binding to and tyrosine phosphorylation of the alpha subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol Cell Biol14: 8133–8142. CASPubMedPubMed Central Google Scholar
Colamonici OR, Uyttendaele H, Domanski P, Yan H, Krolewski JJ . (1994b). Ligand-independent anti-oncogenic activity of the alpha subunit of the type I interferon receptor. J Biol Chem269: 3518–3522. CASPubMed Google Scholar
Copeland NG, Gilbert DJ, Schindler C, Zhong Z, Wen Z, Darnell Jr JE et al. (1995). Distribution of the mammalian Stat gene family in mouse chromosomes. Genomics29: 225–228. CASPubMed Google Scholar
Danial NN, Losman JA, Lu T, Yip N, Krishnan K, Krolewski J et al. (1998). Direct interaction of Jak1 and v-Abl is required for v-Abl-induced activation of STATs and proliferation. Mol Cell Biol18: 6795–6804. CASPubMedPubMed Central Google Scholar
Danial NN, Pernis A, Rothman PB . (1995). Jak-STAT signaling induced by the v-abl oncogene. Science269: 1875–1877. CASPubMed Google Scholar
Darnell Jr JE . (1997). STATs and gene regulation. Science277: 1630–1635. CASPubMed Google Scholar
Darnell Jr JE, Kerr IM, Stark GR . (1994). Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science264: 1415–1421. CASPubMed Google Scholar
David M, Chen HE, Goelz S, Larner AC, Neel BG . (1995a). Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol15: 7050–7058. CASPubMedPubMed Central Google Scholar
David M, Petricoin III E, Benjamin C, Pine R, Weber MJ, Larner AC . (1995b). Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins. Science269: 1721–1723. CASPubMed Google Scholar
Duhe RJ, Farrar WL . (1995). Characterization of active and inactive forms of the JAK2 protein-tyrosine kinase produced via the baculovirus expression vector system. J Biol Chem270: 23084–23089. CASPubMed Google Scholar
Durand C, Dzierzak E . 2005. Embryonic beginnings of adult hematopoietic stem cells. Haematologica90: 100–108. PubMed Google Scholar
Eder M, Ernst TJ, Ganser A, Jubinsky PT, Inhorn R, Hoelzer D et al. (1994). A low affinity chimeric human alpha/beta-granulocyte-macrophage colony-stimulating factor receptor induces ligand-dependent proliferation in a murine cell line. J Biol Chem269: 30173–30180. CASPubMed Google Scholar
Eilers A, Kanda K, Klose B, Krolewski J, Decker T . (1996). Constitutive STAT1 tyrosine phosphorylation in U937 monocytes overexpressing the TYK2 protein tyrosine kinase does not induce gene transcription. Cell Growth Differ7: 833–840. CASPubMed Google Scholar
Ema H, Nakauchi H . (2003). Self-renewal and lineage restriction of hematopoietic stem cells. Curr Opin Gen Dev13: 508–512. CAS Google Scholar
Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K et al. (1997). A new protein containing an SH2 domain that inhibits JAK kinases. Nature387: 921–924. CASPubMed Google Scholar
Feener EP, Rosario F, Dunn SL, Stancheva Z, Myers Jr MG . (2004). Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol Cell Biol24: 1968–4978. Google Scholar
Firmbach-Kraft I, Byers M, Shows T, Dalla-Favera R, Krolewski JJ . (1990). tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene5: 1329–1336. CASPubMed Google Scholar
Flores-Morales A, Pircher TJ, Silvennoinen O, Gustafsson JA, Sanchez-Gomez M, Norstedt G et al. (1998). In vitro interaction between STAT 5 and JAK 2; dependence upon phosphorylation status of STAT 5 and JAK 2. Mol Cell Endocrinol138: 1–10. CASPubMed Google Scholar
Frank DA, Varticovski L . (1996). BCR/abl leads to the constitutive activation of Stat proteins, and shares an epitope with tyrosine phosphorylated Stats. Leukemia10: 1724–1730. CASPubMed Google Scholar
Funakoshi-Tago M, Pelletier S, Matsuda T, Parganas E, Ihle JN . (2006). Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. EMBO J25: 4763–4772. CASPubMedPubMed Central Google Scholar
Gartsbein M, Alt A, Hashimoto K, Nakajima K, Kuroki T, Tennenbaum T . (2006). The role of protein kinase C delta activation and STAT3 Ser727 phosphorylation in insulin-induced keratinocyte proliferation. J Cell Sci119: 470–481. CASPubMed Google Scholar
Gauzzi MC, Barbieri G, Richter MF, Uz G, Ling L, Fellous M et al. (1997). The amino-terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of the interferon alpha/beta receptor. Proc Natl Acad Sci USA94: 11839–11844. CASPubMedPubMed Central Google Scholar
Gearing DP, King JA, Gough NM, Nicola NA . (1989). Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J8: 3667–3676. CASPubMedPubMed Central Google Scholar
Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, Huang M et al. (2006). Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res12: 11–19. CASPubMed Google Scholar
Haan C, Heinrich PC, Behrmann I . (2002). Structural requirements of the interleukin-6 signal transducer gp130 for its interaction with Janus kinase 1: the receptor is crucial for kinase activation. Biochem J361: 105–111. CASPubMedPubMed Central Google Scholar
Haan C, Kreis S, Margue C, Behrmann I . (2006). Jaks and cytokine receptors—an intimate relationship. Biochem Pharmacol72: 1538–1546. CASPubMed Google Scholar
Haque SJ, Harbor P, Tabrizi M, Yi T, Williams BR . (1998). Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J Biol Chem273: 33893–33896. CASPubMed Google Scholar
Harpur AG, Andres AC, Ziemiecki A, Aston RR, Wilks AF . (1992). JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene7: 1347–1353. CASPubMed Google Scholar
Haura EB, Turkson J, Jove R . (2005). Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Clin Pract Oncol2: 315–324. CASPubMed Google Scholar
Hayashida K, Kitamura T, Gorman DM, Arai K, Yokota T, Miyajima A . (1990). Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): reconstitution of a high-affinity GM-CSF receptor. Proc Natl Acad Sci USA87: 9655–9659. CASPubMedPubMed Central Google Scholar
Higgins DG, Thompson JD, Gibson TJ . (1996). Using CLUSTAL for multiple sequence alignments. Methods Enzymol266: 383–402. CASPubMed Google Scholar
Horvath CM, Wen Z, Darnell Jr JE . (1995). A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev9: 984–994. CASPubMed Google Scholar
Huang LJ, Constantinescu SN, Lodish HF . (2001). The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell Biol8: 1327–1338. CAS Google Scholar
Hunter T . (1993). Signal transduction. Cytokine Connections Nat366: 114–116. CAS Google Scholar
Ihle JN, Nosaka T, Thierfelder W, Quelle FW, Shimoda K . (1997). Jaks and Stats in cytokine signaling. Stem Cells15: 105–111; discussion 112. CASPubMed Google Scholar
Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O . (1995). Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol13: 369–398. CASPubMed Google Scholar
Ilaria Jr RL, Van Etten RA . (1996). P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem271: 31704–31710. CASPubMed Google Scholar
Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G et al. (2001). CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature409: 349–354. CASPubMed Google Scholar
Itoh N, Yonehara S, Schreurs J, Gorman DM, Maruyama K, Ishii A et al. (1990). Cloning of an interleukin-3 receptor gene: a member of a distinct receptor gene family. Science247: 324–327. CASPubMed Google Scholar
Jain N, Zhang T, Fong SL, Lim CP, Cao X . (1998). Repression of Stat3 activity by activation of mitogen-activated protein kinase (MAPK). Oncogene17: 3157–3167. CASPubMed Google Scholar
Jain N, Zhang T, Kee WH, Li W, Cao X . (1999). Protein kinase C delta associates with and phosphorylates Stat3 in an interleukin-6-dependent manner. J Biol Chem274: 24392–24400. CASPubMed Google Scholar
James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C et al. (2005). A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature434: 1144–1148. CASPubMed Google Scholar
Jiao H, Berrada K, Yang W, Tabrizi M, Platanias LC, Yi T . (1996). Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol16: 6985–6992. CASPubMedPubMed Central Google Scholar
Jubinsky PT, Nathan DG, Wilson DJ, Sieff CA . (1993). A low-affinity human granulocyte-macrophage colony-stimulating factor/murine erythropoietin hybrid receptor functions in murine cell lines. Blood81: 587–591. CASPubMed Google Scholar
Kampa D, Burnside J . (2000). Computational and functional analysis of the putative SH2 domain in Janus kinases. Biochem Biophys Res Commun278: 175–182. CASPubMed Google Scholar
Kawamura M, McVicar DW, Johnston JA, Blake TB, Chen YQ, Lal BK et al. (1994). Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc Natl Acad Sci USA9: 6374–6378. Google Scholar
Kazansky AV, Kabotyanski EB, Wyszomierski SL, Mancini MA, Rosen JM . (1999). Differential effects of prolactin and src/abl kinases on the nuclear translocation of STAT5B and STAT5A. J Biol Chem274: 22484–22492. CASPubMed Google Scholar
Khwaja A . (2006). The role of Janus kinases in haemapoiesis and haematological malignancy. Br J Haematol134: 366–384. CASPubMed Google Scholar
Kishimoto T, Taga T, Akira S . (1994). Cytokine signal transduction. Cell76: 253–262. CASPubMed Google Scholar
Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW . (2002). Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene285: 1–24. CASPubMed Google Scholar
Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF . (1995). Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell80: 729–738. CASPubMed Google Scholar
Kohlhuber F, Rogers NC, Watling D, Feng J, Guschin D, Briscoe J et al. (1997). A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol Cell Biol17: 695–706. CASPubMedPubMed Central Google Scholar
Kotenko SV, Izotova LS, Pollack BP, Muthukumaran G, Paukku K, Silvennoinen O et al. (1996). Other kinases can substitute for Jak2 in signal transduction by interferon-gamma. J Biol Chem271: 17174–17182. CASPubMed Google Scholar
Kouro T, Kikuchi Y, Kanazawa H, Hirokawa K, Harada N, Shiiba M et al. (1996). Critical proline residues of the cytoplasmic domain of the IL-5 receptor alpha chain and its function in IL-5-mediated activation of JAK kinase and STAT5. Int Immunol8: 237–245. CASPubMed Google Scholar
Kovarik P, Mangold M, Ramsauer K, Heidari H, Steinborn R, Zotter A et al. (2001). Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. EMBO J20: 91–100. CASPubMedPubMed Central Google Scholar
Krebs DL, Hilton DJ . (2001). SOCS proteins: negative regulators of cytokine signaling. Stem Cells19: 378–387. CASPubMed Google Scholar
Krishnan K, Pine R, Krolewski JJ . (1997). Kinase-deficient forms of Jak1 and Tyk2 inhibit interferon alpha signaling in a dominant manner. Eur J Biochem247: 298–305. CASPubMed Google Scholar
Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. (2005). A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med352: 1779–1790. CASPubMed Google Scholar
Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. (2005). Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell7: 387–397. CASPubMed Google Scholar
Lin JX, Mietz J, Modi WS, John S, Leonard WJ . (1996). Cloning of human Stat5B. Reconstitution of interleukin-2-induced Stat5A and Stat5B DNA binding activity in COS-7 cells. J Biol Chem271: 10738–10744. CASPubMed Google Scholar
Lu X, Chen J, Sasmono RT, Hsi ED, Sarosiek KA, Tiganis T et al. (2007). T-cell protein tyrosine phosphatase, distinctively expressed in activated-B-cell-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6. Mol Cell Biol27: 166–179. Google Scholar
Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S et al. (2005). Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA102: 18962–18967. CASPubMedPubMed Central Google Scholar
Matsuguchi T, Zhao Y, Lilly MB, Kraft AS . (1997). The cytoplasmic domain of granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha subunit is essential for both GM-CSF-mediated growth and differentiation. J Biol Chem272: 17450–17459. CASPubMed Google Scholar
Matsumoto A, Masuhara M, Mitsui K, Yokouchi M, Ohtsubo M, Misawa H et al. (1997). CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood89: 3148–3154. CASPubMed Google Scholar
Migone TS, Cacalano NA, Taylor N, Yi T, Waldmann TA, Johnston JA . (1998). Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T-lymphotropic virus type I-transformed T cells. Proc Natl Acad Sci USA95: 3845–3850. CASPubMedPubMed Central Google Scholar
Miyajima A, Kitamura T, Harada N, Yokota T, Arai K . (1992). Cytokine receptors and signal transduction. Annu Rev Immunol10: 295–331. CASPubMed Google Scholar
Mui AL, Wakao H, Harada N, O’Farrell AM, Miyajima A . (1995a). Interleukin-3, granulocyte-macrophage colony-stimulating factor, and interleukin-5 transduce signals through two forms of STAT5. J Leukoc Biol57: 799–803. CASPubMed Google Scholar
Mui AL, Wakao H, O’Farrell AM, Harada N, Miyajima A . (1995b). Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J14: 1166–1175. CASPubMedPubMed Central Google Scholar
Murata Y, Takaki S, Migita M, Kikuchi Y, Tominaga A, Takatsu K . (1992). Molecular cloning and expression of the human interleukin 5 receptor. J Exp Med175: 341–351. CASPubMed Google Scholar
Murray PJ . (2007). The JAK–STAT signaling pathway: input and output regulation. J Immunol78: 2623–2629. Google Scholar
Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP et al. (2001). TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem276: 47771–47774. CASPubMed Google Scholar
Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A et al. (1997). Structure and function of a new STAT-induced STAT inhibitor. Nature387: 924–929. CASPubMed Google Scholar
Neel BG, Gu H, Pao L . (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci28: 284–293. CASPubMed Google Scholar
Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B et al. (1999). Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med189: 1229–1242. CASPubMedPubMed Central Google Scholar
Niu G, Shain KH, Huang M, Ravi R, Bedi A, Dalton WS et al. (2001). Overexpression of a dominant-negative signal transducer and activator of transcription 3 variant in tumor cells leads to production of soluble factors that induce apoptosis and cell cycle arrest. Cancer Res61: 3276–3280. CASPubMed Google Scholar
O’Shea JJ, Gadina M, Schreiber RD . (2002). Cytokine signaling in 2002: NEw surprises in the Jak/Stat pathway. Cell109: S121–S131. PubMed Google Scholar
Pallen CJ, Tan YH, Guy GR . (1992). Protein phosphatases in cell signalling. Curr Opin Cell Biol4: 1000–1007. CASPubMed Google Scholar
Pellegrini S, Dusanter-Fourt I . 1997. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur J Biochem248: 615–633. CASPubMed Google Scholar
Quelle FW, Thierfelder W, Witthuhn BA, Tang B, Cohen S, Ihle JN . (1995). Phosphorylation and activation of the DNA binding activity of purified Stat1 by the Janus protein-tyrosine kinases and the epidermal growth factor receptor. J Biol Chem270: 20775–20780. CASPubMed Google Scholar
Ragimbeau J, Dondi E, Alcover A, Eid P, Uze G, Pellegrini S . (2003). The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J22: 537–547. CASPubMedPubMed Central Google Scholar
Rakesh K, Agrawal DK . (2005). Controlling cytokine signaling by constitutive inhibitors. Biochem Pharmacol70: 649–657. CASPubMed Google Scholar
Rane SG, Reddy EP . (1994). JAK3: a novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene9: 2415–2423. CASPubMed Google Scholar
Reddy EP, Korapati A, Chaturvedi P, Rane S . (2000). IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene19: 2532–2547. CASPubMed Google Scholar
Richter MF, Duménil G, Uzé G, Fellous M, Pellegrini S . (1998). Specific contribution of Tyk2 JH regions to the binding and the expression of the interferon alpha/beta receptor component IFNAR1. J Biol Chem273: 24723–24729. CASPubMed Google Scholar
Rosmarin AG, Yang Z, Resendes KK . (2005). Transcriptional regulation in myelopoiesis: hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol33: 131–143. CASPubMed Google Scholar
Russell SM, Johnston JA, Noguchi M, Kawamura M, Bacon CM, Friedmann M et al. (1994). Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science266: 1042–1045. CASPubMed Google Scholar
Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ et al. (1995). Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science270: 797–800. CASPubMed Google Scholar
Saharinen P, Silvennoinen O . (2002). The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem277: 47954–47963. CASPubMed Google Scholar
Saharinen P, Takaluoma K, Silvennoinen O . (2000). Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol20: 3387–3395. CASPubMedPubMed Central Google Scholar
Saharinen P, Vihinen M, Silvennoinen O . (2003). Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol Cell Biol14: 1448–1459. CAS Google Scholar
Schaefer TS, Sanders LK, Nathans D . (1995). Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci USA92: 9097–9101. CASPubMedPubMed Central Google Scholar
Schindler C, Strehlow I . (2000). Cytokines and STAT signaling. Adv Pharmacol47: 113–174. CASPubMed Google Scholar
Seki Y, Hayashi K, Matsumoto A, Seki N, Tsukada J, Ransom J et al. (2002). Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proc Natl Acad Sci USA99: 13003–13008. CASPubMedPubMed Central Google Scholar
Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ . (2002). The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol12: 446–453. CASPubMed Google Scholar
Smith A, Metcalf D, Nicola NA . (1997). Cytoplasmic domains of the common beta-chain of the GM-CSF/IL-3/IL-5 receptors that are required for inducing differentiation or clonal suppression in myeloid leukaemic cell lines. EMBO J16: 451–464. CASPubMedPubMed Central Google Scholar
Stahl N, Yancopoulos GD . (1993). The alphas, betas, and kinases of cytokine receptor complexes. Cell74: 587–590. CASPubMed Google Scholar
Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ et al. (1997). A family of cytokine-inducible inhibitors of signalling. Nature387: 917–921. CASPubMed Google Scholar
Takahashi T, Shirasawa T . (1994). Molecular cloning of rat JAK3, a novel member of the JAK family of protein tyrosine kinases. FEBS Lett342: 124–128. CASPubMed Google Scholar
Tanaka T, Soriano MA, Grusby MJ . (2005). SLIM is a nuclear ubiquitin E3 ligase that negatively regulates STAT signaling. Immunity22: 729–736. CASPubMed Google Scholar
Taniguchi T . (1995). Cytokine signaling through non-receptor tyrosine kinases. Science268: 251–255. CASPubMed Google Scholar
ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M et al. (2002). Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol22: 5662–5668. CASPubMedPubMed Central Google Scholar
Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O . (2002). Regulation of Jak2 through the ubiquitin–proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol22: 3316–3326. CASPubMedPubMed Central Google Scholar
Ungureanu D, Vanhatupa S, Kotaja N, Yang J, Aittomaki S, Janne OA et al. (2003). PIAS proteins promote SUMO-1 conjugation to STAT1. Blood102: 3311–3313. CASPubMed Google Scholar
Valentino L, Pierre J . (2006). JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol71: 713–721. CASPubMed Google Scholar
Verdier F, Chretien S, Muller O, Varlet P, Yoshimura A, Gisselbrecht S et al. (1998). Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J BiolChem273: 28185–28190. CAS Google Scholar
Waiboci LW, Ahmed CM, Mujtaba MG, Flowers LO, Martin JP, Haider MI et al. (2007). Both the suppressor of cytokine signaling 1 (SOCS-1) kinase inhibitory region and SOCS-1 mimetic bind to JAK2 autophosphorylation site: implications for the development of a SOCS-1 antagonist. J Immunol178: 5058–5068. CASPubMed Google Scholar
Wang Y, Morella KK, Ripperger J, Lai CF, Gearing DP, Fey GH et al. (1995). Receptors for interleukin-3 (IL-3) and growth hormone mediate an IL-6-type transcriptional induction in the presence of JAK2 or STAT3. Blood86: 1671–1679. CASPubMed Google Scholar
Watowich SS, Hilton DJ, Lodish HF . (1994). Activation and inhibition of erythropoietin receptor function: role of receptor dimerization. Mol Cell Biol14: 3535–3549. CASPubMedPubMed Central Google Scholar
Wen Z, Zhong Z, Darnell Jr JE . (1995). Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell82: 241–250. CASPubMed Google Scholar
Wilks AF, Harpur AG, Kurban RR, Ralph SJ, Zürcher G, Ziemiecki A . (1991). Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol11: 2057–2065. CASPubMedPubMed Central Google Scholar
Wojchowski DM, Gregory RC, Miller CP, Pandit AK, Pircher TJ . (1999). Signal transduction in the erythropoietin receptor system. Exp Cell Res253: 143–156. CASPubMed Google Scholar
Xu X, Sun YL, Hoey T . (1996). Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science272: 794–797. Google Scholar
Yamada T, Zhu D, Saxon A, Zhang K . (2002). CD45 controls interleukin-4-mediated IgE class switch recombination in human B cells through its function as a Janus kinase phosphatase. J Biol Chem277: 28830–28835. CASPubMed Google Scholar
Yamamoto K, Quelle FW, Thierfelder WE, Kreider BL, Gilbert DJ, Jenkins NA et al. (1994). Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. Mol Cell Biol14: 4342–4349. CASPubMedPubMed Central Google Scholar
Yi T, Mui AL, Krystal G, Ihle JN . (1993). Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Mol Cell Biol13: 7577–7586. CASPubMedPubMed Central Google Scholar
Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG et al. (1995). A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J14: 2816–2826. CASPubMedPubMed Central Google Scholar
Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J et al. (1995). Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science269: 81–83. CASPubMed Google Scholar
Zhang X, Blenis J, Li H, Schindler C, Chen-Kiang S . (1995). Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science267: 1990–1994. CASPubMed Google Scholar