The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells (original) (raw)
Woyach JA, Lozanski G, Ruppert AS, Lozanski A, Blum KA, Jones JA et al. Outcome of patients with relapsed or refractory chronic lymphocytic leukemia treated with flavopiridol: impact of genetic features. Leukemia 2012; 26: 1442–1444. ArticleCASPubMedPubMed Central Google Scholar
Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456. ArticleCASPubMedPubMed Central Google Scholar
Baumgarth N . The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 2011; 11: 34–46. ArticleCASPubMed Google Scholar
Huttmann A, Klein-Hitpass L, Thomale J, Deenen R, Carpinteiro A, Nuckel H et al. Gene expression signatures separate B-cell chronic lymphocytic leukaemia prognostic subgroups defined by ZAP-70 and CD38 expression status. Leukemia 2006; 20: 1774–1782. ArticleCASPubMed Google Scholar
Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847. CASPubMed Google Scholar
Rassenti LZ, Jain S, Keating MJ, Wierda WG, Grever MR, Byrd JC et al. Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood 2008; 112: 1923–1930. ArticleCASPubMedPubMed Central Google Scholar
Gorgun G, Holderried TA, Zahrieh D, Neuberg D, Gribben JG . Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Invest 2005; 115: 1797–1805. ArticlePubMedPubMed Central Google Scholar
Herling M, Patel KA, Weit N, Lilienthal N, Hallek M, Keating MJ et al. High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood 2009; 114: 4675–4686. ArticleCASPubMedPubMed Central Google Scholar
Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960. ArticleCASPubMedPubMed Central Google Scholar
Hofbauer JP, Heyder C, Denk U, Kocher T, Holler C, Trapin D et al. Development of CLL in the TCL1 transgenic mouse model is associated with severe skewing of the T-cell compartment homologous to human CLL. Leukemia 2011; 25: 1452–1458. ArticlePubMed Google Scholar
Gorgun G, Ramsay AG, Holderried TA, Zahrieh D, Le Dieu R, Liu F et al. E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci USA 2009; 106: 6250–6255. ArticleCASPubMedPubMed Central Google Scholar
Jak M, Mous R, Remmerswaal EB, Spijker R, Jaspers A, Yague A et al. Enhanced formation and survival of CD4+ CD25hi Foxp3+ T-cells in chronic lymphocytic leukemia. Leukemia Lymphoma 2009; 50: 788–801. ArticleCASPubMed Google Scholar
Giannopoulos K, Schmitt M, Kowal M, Wlasiuk P, Bojarska-Junak A, Chen J et al. Characterization of regulatory T cells in patients with B-cell chronic lymphocytic leukemia. Oncol Rep 2008; 20: 677–682. PubMed Google Scholar
Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 2008; 118: 2427–2437. CASPubMedPubMed Central Google Scholar
Porakishvili N, Kardava L, Jewell AP, Yong K, Glennie MJ, Akbar A et al. Cytotoxic CD4+ T cells in patients with B cell chronic lymphocytic leukemia kill via a perforin-mediated pathway. Haematologica 2004; 89: 435–443. CASPubMed Google Scholar
Molica S, Levato D, Levato L . Infections in chronic lymphocytic leukemia. Analysis of incidence as a function of length of follow-up. Haematologica 1993; 78: 374–377. CASPubMed Google Scholar
Couper KN, Blount DG, Riley EM . IL-10: the master regulator of immunity to infection. J Immunol 2008; 180: 5771–5777. ArticleCASPubMed Google Scholar
Mauri C, Bosma A . Immune regulatory function of B cells. Annu Rev Immunol 2012; 30: 221–241. ArticleCASPubMed Google Scholar
Balkwill F, Montfort A, Capasso M . B regulatory cells in cancer. Trends Immunol 2013; 34: 169–173. ArticleCASPubMed Google Scholar
DiLillo DJ, Weinberg JB, Yoshizaki A, Horikawa M, Bryant JM, Iwata Y et al. Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function. Leukemia 2013; 27: 170–182. ArticleCASPubMed Google Scholar
Vincent FB, Saulep-Easton D, Figgett WA, Fairfax KA, Mackay F . The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev 2013; 24: 203–215. ArticleCASPubMedPubMed Central Google Scholar
Mackay F, Schneider P . Cracking the BAFF code. Nat Rev Immun 2009; 9: 491–502. ArticleCAS Google Scholar
Novak AJ, Bram RJ, Kay NE, Jelinek DF . Aberrant expression of B-lymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival. Blood 2002; 100: 2973–2979. ArticleCASPubMed Google Scholar
Yang M, Sun L, Wang S, Ko KH, Xu H, Zheng BJ et al. Novel function of B cell-activating factor in the induction of IL-10-producing regulatory B cells. J Immunol 2010; 184: 3321–3325. ArticleCASPubMed Google Scholar
Zhou LJ, Smith HM, Waldschmidt TJ, Schwarting R, Daley J, Tedder TF . Tissue-specific expression of the human CD19 gene in transgenic mice inhibits antigen-independent B-lymphocyte development. Mol Cell Biol 1994; 14: 3884–3894. ArticleCASPubMedPubMed Central Google Scholar
Lech-Maranda E, Mlynarski W, Grzybowska-Izydorczyk O, Borowiec M, Pastorczak A, Cebula-Obrzut B et al. Polymorphisms of TNF and IL-10 genes and clinical outcome of patients with chronic lymphocytic leukemia. Genes Chromosomes Cancer 2013; 52: 287–296. ArticleCASPubMed Google Scholar
Ferrer G, Hodgson K, Pereira A, Juan M, Elena M, Colomer D et al. Combined analysis of levels of serum B-cell activating factor and a proliferation-inducing ligand as predictor of disease progression in patients with chronic lymphocytic leukemia. Leukemia Lymphoma 2011; 52: 2064–2068. ArticleCASPubMed Google Scholar
Kreuzaler M, Rauch M, Salzer U, Birmelin J, Rizzi M, Grimbacher B et al. Soluble BAFF levels inversely correlate with peripheral B cell numbers and the expression of BAFF receptors. J Immunol 2012; 188: 497–503. ArticleCASPubMed Google Scholar
Kern C, Cornuel JF, Billard C, Tang R, Rouillard D, Stenou V et al. Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood 2004; 103: 679–688. ArticleCASPubMed Google Scholar
Batten M, Groom J, Cachero TG, Qian F, Schneider P, Tschopp J et al. BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 2000; 192: 1453–1466. ArticleCASPubMedPubMed Central Google Scholar
O'Connor BP, Raman VS, Erickson LD, Cook WJ, Weaver LK, Ahonen C et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 2004; 199: 91–98. ArticleCASPubMedPubMed Central Google Scholar
Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 2007; 110: 1225–1232. ArticleCASPubMed Google Scholar
Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 2009; 10: 1178–1184. ArticleCASPubMedPubMed Central Google Scholar
Coffer PJ, Burgering BM . Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol 2004; 4: 889–899. ArticleCASPubMed Google Scholar
Sylvan SE, Rossmann E, Mozaffari F, Porwit A, Norin S, Karlsson C et al. Phase I study of lenalidomide and alemtuzumab in refractory chronic lymphocytic leukaemia: maintaining immune functions during therapy-induced immunosuppression. Br J Haematol 2012; 159: 608–612. PubMed Google Scholar
Giannopoulos K, Mertens D, Stilgenbauer S . Treating chronic lymphocytic leukemia with thalidomide and lenalidomide. Expert Opin Pharmacother 2011; 12: 2857–2864. ArticleCASPubMed Google Scholar
Saulep-Easton D, Vincent FB, Le Page M, Wei A, Ting SB, Croce CM et al. Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia. Leukemia 2014; 28: 2005–2015. ArticleCASPubMedPubMed Central Google Scholar
Ng LG, Mackay CR, Mackay F . The BAFF/APRIL system: life beyond B lymphocytes. Mol Immunol 2005; 42: 763–772. ArticleCASPubMed Google Scholar
Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 2000; 165: 5970–5979. ArticleCASPubMed Google Scholar
Vincent FB, Northcott M, Hoi A, Mackay F, Morand EF . Association of serum B cell activating factor from the tumour necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) with central nervous system and renal disease in systemic lupus erythematosus. Lupus 2013; 22: 873–884. ArticleCASPubMed Google Scholar
Amel Kashipaz MR, Huggins ML, Lanyon P, Robins A, Powell RJ, Todd I . Assessment of Be1 and Be2 cells in systemic lupus erythematosus indicates elevated interleukin-10 producing CD5+ B cells. Lupus 2003; 12: 356–363. ArticleCASPubMed Google Scholar
Llorente L, Richaud-Patin Y, Wijdenes J, Alcocer-Varela J, Maillot MC, Durand-Gasselin I et al. Spontaneous production of interleukin-10 by B lymphocytes and monocytes in systemic lupus erythematosus. Eur Cytokine Network 1993; 4: 421–427. CAS Google Scholar
Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011; 117: 530–541. ArticleCASPubMedPubMed Central Google Scholar
Groom JR, Fletcher CA, Walters SN, Grey ST, Watt SV, Sweet MJ et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J Exp Med 2007; 204: 1959–1971. ArticleCASPubMedPubMed Central Google Scholar
Acosta-Rodriguez EV, Craxton A, Hendricks DW, Merino MC, Montes CL, Clark EA et al. BAFF and LPS cooperate to induce B cells to become susceptible to CD95/Fas-mediated cell death. Eur J Immunol 2007; 37: 990–1000. ArticleCASPubMed Google Scholar
Liang X, Moseman EA, Farrar MA, Bachanova V, Weisdorf DJ, Blazar BR et al. Toll-like receptor 9 signaling by CpG-B oligodeoxynucleotides induces an apoptotic pathway in human chronic lymphocytic leukemia B cells. Blood 2010; 115: 5041–5052. ArticleCASPubMedPubMed Central Google Scholar
Treml LS, Carlesso G, Hoek KL, Stadanlick JE, Kambayashi T, Bram RJ et al. TLR stimulation modifies BLyS receptor expression in follicular and marginal zone B cells. J Immunol 2007; 178: 7531–7539. ArticleCASPubMed Google Scholar
Chu VT, Enghard P, Riemekasten G, Berek C . In vitro and in vivo activation induces BAFF and APRIL expression in B cells. J Immunol 2007; 179: 5947–5957. ArticleCASPubMed Google Scholar
Ziegler S, Gartner K, Scheuermann U, Zoeller T, Hantzschmann J, Over B et al. Ca(2+) -related signaling events influence TLR9-induced IL-10 secretion in human B cells. Eur J Immunol 2014; 44: 1285–1298. ArticleCASPubMed Google Scholar
Kofler DM, Gawlik BB, Elter T, Gianella-Borradori A, Wendtner CM, Hallek M . Phase 1b trial of atacicept, a recombinant protein binding BLyS and APRIL, in patients with chronic lymphocytic leukemia. Leukemia 2012; 26: 841–844. ArticleCASPubMed Google Scholar
Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF . Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 2008; 118: 3420–3430. CASPubMedPubMed Central Google Scholar
Matsushita T, Horikawa M, Iwata Y, Tedder TF . Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J Immunol 2010; 185: 2240–2252. ArticleCASPubMed Google Scholar
Carter NA, Vasconcellos R, Rosser EC, Tulone C, Munoz-Suano A, Kamanaka M et al. Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J Immunol 2011; 186: 5569–5579. ArticleCASPubMed Google Scholar
Walters S, Webster KE, Sutherland A, Gardam S, Groom J, Liuwantara D et al. Increased CD4+Foxp3+ T cells in BAFF-transgenic mice suppress T cell effector responses. J Immunol 2009; 182: 793–801. ArticleCASPubMed Google Scholar
Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389: 737–742. ArticleCASPubMed Google Scholar
D'Arena G, Laurenti L, Minervini MM, Deaglio S, Bonello L, De Martino L et al. Regulatory T-cell number is increased in chronic lymphocytic leukemia patients and correlates with progressive disease. Leukemia Res 2011; 35: 363–368. Article Google Scholar
Yoshizaki A, Miyagaki T, DiLillo DJ, Matsushita T, Horikawa M, Kountikov EI et al. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 2012; 491: 264–268. ArticleCASPubMedPubMed Central Google Scholar
Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O'Farrelly C et al. CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol 2009; 183: 7602–7610. ArticleCASPubMed Google Scholar