Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene (original) (raw)
References
Weissman, I. L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science287, 1442–1446 (2000) ArticleADSCAS Google Scholar
Shivdasani, R. A., Mayer, E. L. & Orkin, S. H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature373, 432–443 (1995) ArticleADSCAS Google Scholar
Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell86, 47–57 (1996) ArticleCAS Google Scholar
Porcher, C., Liao, E. C., Fujiwara, Y., Zon, L. I. & Orkin, S. H. Specification of hematopoietic and vascular development by the bHLH transcription factor SCL without direct DNA binding. Development126, 4603–4615 (1999) CASPubMed Google Scholar
Robb, L. et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl Acad. Sci. USA92, 7075–7079 (1995) ArticleADSCAS Google Scholar
Robb, L. et al. The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J.15, 4123–4129 (1996) ArticleCAS Google Scholar
Gering, M., Rodaway, A. R., Gottgens, B., Patient, R. K. & Green, A. R. The SCL gene specifies haemangioblast development from early mesoderm. EMBO J.17, 4029–4045 (1998) ArticleCAS Google Scholar
Mead, P. E., Deconinck, A. E., Huber, T. L., Orkin, S. H. & Zon, L. I. Primitive erythropoiesis in the Xenopus embryo: the synergistic role of LMO-2, SCL and GATA-binding proteins. Development128, 2301–2308 (2001) CASPubMed Google Scholar
Elefanty, A. G. et al. Characterization of hematopoietic progenitor cells that express the transcription factor SCL, using a lacZ ‘knock-in’ strategy. Proc. Natl Acad. Sci. USA95, 11897–11902 (1998) ArticleADSCAS Google Scholar
Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature404, 193–197 (2000) ArticleADSCAS Google Scholar
Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science298, 597–600 (2002) ArticleADSCAS Google Scholar
Orkin, S. H. Diversification of haematopoietic stem cells to specific lineages. Nature Rev. Genet.1, 57–64 (2000) ArticleCAS Google Scholar
Mikkola, I., Heavey, B., Horcher, M. & Busslinger, M. Reversion of B cell commitment upon loss of Pax5 expression. Science297, 110–113 (2002) ArticleADSCAS Google Scholar
Gu, H., Marth, J. D., Orban, P. C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase-β gene segment in T cells using cell type-specific gene targeting. Science265, 103–106 (1994) ArticleADSCAS Google Scholar
Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science269, 1427–1429 (1995) ArticleADSCAS Google Scholar
Socolovsky, M. et al. Ineffective erythropoiesis in _Stat5a_-/-_5b_-/- mice due to decreased survival of early erythroblasts. Blood98, 3261–3273 (2001) ArticleCAS Google Scholar
Wadman, I. A. et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J.16, 3145–3157 (1997) ArticleCAS Google Scholar
Yamada, Y. et al. The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc. Natl Acad. Sci. USA95, 3890–3895 (1998) ArticleADSCAS Google Scholar
Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C. & Keller, G. A common precursor for hematopoietic and endothelial cells. Development125, 725–732 (1998) CASPubMed Google Scholar
Robertson, S. M., Kennedy, M., Shannon, J. M. & Keller, G. A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development127, 2447–2459 (2000) CASPubMed Google Scholar
Faloon, P. et al. Basic fibroblast growth factor positively regulates hematopoietic development. Development127, 1931–1941 (2000) CASPubMed Google Scholar
Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature416, 542–545 (2002) ArticleADSCAS Google Scholar
Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature416, 545–548 (2002) ArticleADSCAS Google Scholar
Cantor, A. B., Katz, S. G. & Orkin, S. H. Distinct domains of the GATA-1 cofactor FOG-1 differentially influence erythroid versus megakaryocytic maturation. Mol. Cell. Biol.22, 4268–4279 (2002) ArticleCAS Google Scholar