Vaze, M. B. et al. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell10, 373–385 (2002) ArticleCAS Google Scholar
Lee, S. K., Johnson, R. E., Yu, S. L., Prakash, L. & Prakash, S. Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science286, 2339–2342 (1999) ArticleCAS Google Scholar
Gangloff, S., Soustelle, C. & Fabre, F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nature Genet.25, 192–194 (2000) ArticleCAS Google Scholar
Oakley, T. J. & Hickson, I. D. Defending genome integrity during S-phase: putative roles for RecQ helicases and topoisomerase III. DNA Repair1, 175–207 (2002) ArticleCAS Google Scholar
Rong, L. & Klein, H. L. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem.268, 1252–1259 (1993) CASPubMed Google Scholar
Milne, G. T., Ho, T. & Weaver, D. T. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics139, 1189–1199 (1995) CASPubMedPubMed Central Google Scholar
Chanet, R., Heude, M., Adjiri, A., Maloisel, L. & Fabre, F. Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol. Cell. Biol.16, 4782–4789 (1996) ArticleCAS Google Scholar
Schild, D. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics140, 115–127 (1995) CASPubMedPubMed Central Google Scholar
Sung, P. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science265, 1241–1243 (1994) ArticleADSCAS Google Scholar
Sung, P., Trujillo, K. M. & Van Komen, S. Recombination factors of Saccharomyces cerevisiae. Mutat. Res.451, 257–275 (2000) ArticleCAS Google Scholar
Cox, M. M. Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu. Rev. Genet.35, 53–82 (2001) ArticleCAS Google Scholar
Bianco, P. R., Tracy, R. B. & Kowalczykowski, S. C. DNA strand exchange proteins: a biochemical and physical comparison. Front. Biosci.3, 570–603 (1998) Article Google Scholar
Petukhova, G., Stratton, S. & Sung, P. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature393, 91–94 (1998) ArticleADSCAS Google Scholar
Mazin, A. V., Zaitseva, E., Sung, P. & Kowalczykowski, S. C. Tailed duplex DNA is the preferred substrate for Rad51 protein-mediated homologous pairing. EMBO J.19, 1148–1156 (2000) ArticleCAS Google Scholar
Van Komen, S., Petukhova, G., Sigurdsson, S. & Sung, P. Functional cross-talk among Rad51, Rad54, and replication protein A in heteroduplex DNA joint formation. J. Biol. Chem.277, 43578–43587 (2002) ArticleCAS Google Scholar
Ogawa, T., Yu, X., Shinohara, A. & Egelman, E. H. Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science259, 1896–1899 (1993) ArticleADSCAS Google Scholar
Sung, P. & Robberson, D. L. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell82, 453–461 (1995) ArticleCAS Google Scholar
Sung, P. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev.11, 1111–1121 (1997) ArticleCAS Google Scholar
Sugiyama, T., Zaitseva, E. M. & Kowalczykowski, S. C. A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J. Biol. Chem.272, 7940–7945 (1997) ArticleCAS Google Scholar
Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature423, 309–312 (2003) ArticleADSCAS Google Scholar
Aboussekhra, A. et al. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res.17, 7211–7219 (1989) ArticleCAS Google Scholar
Aboussekhra, A., Chanet, R., Adjiri, A. & Fabre, F. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol.12, 3224–3234 (1992) ArticleCAS Google Scholar
Liberi, G. et al. Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity. EMBO J.19, 5027–5038 (2000) ArticleCAS Google Scholar
Palladino, F. & Klein, H. L. Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants. Genetics132, 23–37 (1992) CASPubMedPubMed Central Google Scholar
Adams, M. D., McVey, M. & Sekelsky, J. J. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science299, 265–267 (2003) ArticleADSCAS Google Scholar
Wu, L., Davies, S. L., Levitt, N. C. & Hickson, I. D. Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J. Biol. Chem.276, 19375–19381 (2001) ArticleCAS Google Scholar
Mankouri, H. W., Craig, T. J. & Morgan, A. SGS1 is a multicopy suppressor of srs2: functional overlap between DNA helicases. Nucleic Acids Res.30, 1103–1113 (2002) ArticleCAS Google Scholar
Petukhova, G., Stratton, S. A. & Sung, P. Single strand DNA binding and annealing activities in the yeast recombination factor Rad59. J. Biol. Chem.274, 33839–33842 (1999) ArticleCAS Google Scholar
Krejci, L., Damborsky, J., Thomsen, B., Duno, M. & Bendixen, C. Molecular dissection of interactions between Rad51 and members of the recombination-repair group. Mol. Cell. Biol.21, 966–976 (2001) ArticleCAS Google Scholar