Cephalopod Hox genes and the origin of morphological novelties (original) (raw)

References

  1. Runnegar, B. & Pojeta, J. J. Molluscan phylogeny: the paleontological viewpoint. Science 186, 311–317 (1974)
    Article ADS CAS Google Scholar
  2. House, M. R. in Cephalopods—Present and Past (eds Wiedmann, J. & Kullmann, J.) 1–16 (Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 1988)
    Google Scholar
  3. Lowe, C. J. & Wray, G. A. Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389, 718–722 (1997)
    Article ADS CAS Google Scholar
  4. Keys, D. N. et al. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283, 532–534 (1999)
    Article ADS CAS Google Scholar
  5. Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell Science, Malden, 2001)
    Google Scholar
  6. Telford, M. J. Evidence for the derivation of the Drosophila fushi tarazu gene from a Hox gene orthologous to lophotrochozoan. Lox5. Curr. Biol. 10, 349–352 (2000)
    Article CAS Google Scholar
  7. Godwin, A. R. & Capecchi, M. R. Hoxc13 mutant mice lack external hair. Genes Dev. 12, 11–20 (1998)
    Article CAS Google Scholar
  8. Callaerts, P. et al. HOX genes in the sepiolid squid Euprymna scolopes: implications for the evolution of complex body plans. Proc. Natl Acad. Sci. USA 99, 2088–2093 (2002)
    Article ADS CAS Google Scholar
  9. Brusca, R. C. & Brusca, G. J. Invertebrates (Massachusetts, Sinauer, Sunderland, 2003)
    Google Scholar
  10. Boletzky, S. v. in Cephalopods—Present and Past (ed. Wiedmann, J. K., J.)) 167–179 (Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 1988)
    Google Scholar
  11. Budelmann, B. U. in The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach (eds Breidbach, O. & Kutsch, W.) 115–138 (Birkhauser, Basel, 1995)
    Book Google Scholar
  12. Hinman, V. F., O'Brien, E. K., Richards, G. & Degnan, B. M. Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol. Dev. (in the press)
  13. Shigeno, S., Kidokoro, H., Tsuchiya, K., Segawa, S. & Yamamoto, M. Development of the brain in the oegopsid squid, Todarodes pacificus: an atlas up to the hatching stage. Zool. Sci. 18, 527–541 (2001)
    Article Google Scholar
  14. Shigeno, S., Tsuchiya, K. & Segawa, S. Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. J. Comp. Neurol. 437, 449–475 (2001)
    Article CAS Google Scholar
  15. Hartmann, B. et al. Pax6 in the sepiolid squid, Euprymna scolopes: evidence for a role in eye, sensory organ and brain development. Mech. Dev. 120, 177–183 (2003)
    Article CAS Google Scholar
  16. Boletzky, S. v. McGraw-Hill Yearbook of Science & Technology 73–76 (McGraw-Hill, New York, 1994)
    Google Scholar
  17. Young, J. Z. The organization of a cephalopod ganglion. Phil. Trans. R. Soc. Lond. B 263, 409–429 (1972)
    Article ADS CAS Google Scholar
  18. Boletzky, S. v., Frösch, D. & Mangold, K. Développement de vésicules associées au complexe brachial chez les Céphalopodes. C.R. Acad. Sci. (Paris) D 270, 2182–2184 (1970)
    Google Scholar
  19. Sundermann, G. Development and hatching state of ectodermal vesicle-organs in the head of Sepia officinalis, Loligo vulgaris, and Loligo forbesi (Cephalopoda, Decabrachia). Zoomorphology 109, 343–352 (1990)
    Article Google Scholar
  20. McFall-Ngai, M. & Montgomery, M. The anatomy and morphology of the adult bacterial light organ of Euprymna scolopes Berry (Cephalopoda: Sepiolidae). Biol. Bull. 179, 332–339 (1990)
    Article CAS Google Scholar
  21. Nogi, T. & Watanabe, K. Position-specific and non-colinear expression of the planarian posterior (Abdominal-B-like) gene. Dev. Growth Diff. 43, 177–184 (2001)
    Article CAS Google Scholar
  22. Kulakova, M. A., Kostyuchenko, R. P., Andreeva, T. F. & Dondua, A. K. The _Abdominal-B_-like gene expression during larval development of Nereis virens (polychaeta). Mech. Dev. 115, 177–179 (2002)
    Article CAS Google Scholar
  23. Zákány, J. & Duboule, D. Hox genes in digit development and evolution. Cell Tissue Res. 296, 19–25 (1998)
    Google Scholar
  24. Averof, M. & Patel, N. H. Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388, 682–686 (1997)
    Article ADS CAS Google Scholar
  25. Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995)
    CAS PubMed Google Scholar
  26. Moshel, S. M., Levine, M. & Collier, J. R. Shell differentiation and engrailed expression in the Ilyanassa embryo. Dev. Genes Evol. 208, 135–141 (1998)
    Article CAS Google Scholar
  27. Nederbragt, A. J., van Loon, A. E. & Dictus, W. J. A. G. Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev. Biol. 246, 341–355 (2002)
    Article CAS Google Scholar
  28. Wanninger, A. & Haszprunar, G. The expression of an engrailed protein during embryonic shell formation in the tusk-shell, Antalis entalis (Mollusca, Scaphopoda). Evol. Dev. 3, 312–321 (2001)
    Article CAS Google Scholar
  29. Seaver, E. C., Paulson, D., Irvine, S. Q. & Martindale, M. Q. The spatial and temporal expression of Ch-en, the engrailed gene in the polychaete Chaetopterus, does not support a role in body axis segmentation. Dev. Biol. 236, 195–209 (2001)
    Article CAS Google Scholar
  30. Holland, C. H. The nautiloid cephalopods: a strange success. J. Geol. Soc. Lond. 144, 1–15 (1987)
    Article Google Scholar

Download references