Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes (original) (raw)

References

  1. Morrison, S. J. Stem cell potential: can anything make anything? Curr. Biol. 11, R7–R9 (2001)
    Article CAS Google Scholar
  2. Orkin, S. H. & Zon, L. I. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nature Immunol. 3, 323–328 (2002)
    Article CAS Google Scholar
  3. Krause, D. S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377 (2001)
    Article CAS Google Scholar
  4. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001)
    Article ADS CAS Google Scholar
  5. Priller, J. et al. Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J. Cell Biol. 155, 733–738 (2001)
    Article CAS Google Scholar
  6. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002)
    Article ADS CAS Google Scholar
  7. Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002)
    Article ADS CAS Google Scholar
  8. Vassilopoulos, G., Wang, P. R. & Russell, D. W. Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904 (2003)
    Article ADS CAS Google Scholar
  9. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003)
    Article ADS CAS Google Scholar
  10. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392 (1998)
    Article CAS Google Scholar
  11. Lewandoski, M., Meyers, E. N. & Martin, G. R. Analysis of Fgf8 gene function in vertebrate development. Cold Spring Harb. Symp. Quant. Biol. 62, 159–168 (1997)
    Article CAS Google Scholar
  12. Mao, X., Fujiwara, Y. & Orkin, S. H. Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc. Natl Acad. Sci. USA 96, 5037–5042 (1999)
    Article ADS CAS Google Scholar
  13. Ianus, A., Holz, G. G., Theise, N. D. & Hussain, M. A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest. 111, 843–850 (2003)
    Article CAS Google Scholar
  14. Weiss, S. et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609 (1996)
    Article CAS Google Scholar
  15. Palay, L. P. & Chan-Palay, V. Cerebellar Cortex 15–25 (Springer, Berlin, 1974)
    Book Google Scholar
  16. Weimann, J. M., Charlton, C. A., Brazelton, T. R., Hackman, R. C. & Blau, H. M. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl Acad. Sci. USA 100, 2088–2093 (2003)
    Article ADS CAS Google Scholar
  17. Wagers, A. J., Sherwood, R. I., Christensen, J. L. & Weissman, I. L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002)
    Article ADS CAS Google Scholar
  18. Ledbetter, J. A. & Herzenberg, L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol. Rev. 47, 63–90 (1979)
    Article CAS Google Scholar
  19. van Ewijk, W., van Soest, P. L. & van den Engh, G. J. Fluorescence analysis and anatomic distribution of mouse T lymphocyte subsets defined by monoclonal antibodies to the antigens Thy-1, Lyt-1, Lyt-2, and T-200. J. Immunol. 127, 2594–2604 (1981)
    CAS PubMed Google Scholar
  20. Ling, E. A. & Wong, W. C. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7, 9–18 (1993)
    Article CAS Google Scholar
  21. Gehrmann, J., Matsumoto, Y. & Kreutzberg, G. W. Microglia: intrinsic immuneffector cell of the brain. Brain Res. Brain Res. Rev. 20, 269–287 (1995)
    Article CAS Google Scholar
  22. Arias, I. M., et al. The Liver Biology and Pathobiology (Lippincott Williams and Wilkins, Philadelphia, 2001)
    Google Scholar
  23. Anderson, J. M. Multinucleated giant cells. Curr. Opin. Hematol. 7, 40–47 (2000)
    Article CAS Google Scholar
  24. Piper, H. M. & Isenberg, I. Isolated Adult Cardiomyocytes (CRC, Boca Raton, 1989)
    Google Scholar
  25. Lapham, L. W. Tetraploid DNA content of Purkinje neurons of human cerebellar cortex. Science 159, 310–312 (1968)
    Article ADS CAS Google Scholar
  26. Mares, V., Lodin, Z. & Sacha, J. A cytochemical and autoradiographic study of nuclear DNA in mouse Purkinje cells. Brain Res. 53, 273–289 (1973)
    Article CAS Google Scholar
  27. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999)
    Article CAS Google Scholar
  28. Spector, D. L., Goldman, R. D. & Leinwand, L. A. Cells: a Laboratory Manual 4.1–4.7 (Cold Spring Harbor Laboratory Press, New York, 1998)
    Google Scholar
  29. Hadjantonakis, A. K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev. 76, 79–90 (1998)
    Article CAS Google Scholar
  30. Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl Acad. Sci. USA 98, 14541–14546 (2001)
    Article ADS CAS Google Scholar

Download references