A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol (original) (raw)
References
Ellgaard, L. & Helenius, A. ER quality control: towards an understanding at the molecular level. Curr. Opin. Cell Biol.13, 431–437 (2001) ArticleCAS Google Scholar
Tsai, B., Ye, Y. & Rapoport, T. A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature Rev. Mol. Cell Biol.3, 246–255 (2002) ArticleCAS Google Scholar
Wiertz, E. J. H. J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell84, 769–779 (1996) ArticleCAS Google Scholar
Aridor, M. & Balch, W. E. Integration of endoplasmic reticulum signaling in health and disease. Nature Med.5, 745–751 (1999) ArticleCAS Google Scholar
Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J.19, 2181–2192 (2000) ArticleCAS Google Scholar
Ye, Y., Meyer, H. H. & Rapoport, T. A. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol.162, 71–84 (2003) ArticleCAS Google Scholar
Langer, T. AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem. Sci.25, 247–251 (2000) ArticleCAS Google Scholar
Bays, N. W., Wilhovsky, S. K., Goradia, A., Hodgkiss-Harlow, K. & Hampton, R. Y. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol. Biol. Cell12, 4114–4128 (2001) ArticleCAS Google Scholar
Ye, Y., Meyer, H. H. & Rapoport, T. A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature414, 652–656 (2001) ArticleCASADS Google Scholar
Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biol.4, 134–139 (2002) ArticleCAS Google Scholar
Rabinovich, E., Kerem, A., Frohlich, K. U., Diamant, N. & Bar-Nun, S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol.22, 626–634 (2002) ArticleCAS Google Scholar
Wang, Q. & Chang, A. Substrate recognition in ER-associated degradation mediated by Eps1, a member of the protein disulfide isomerase family. EMBO J.22, 3792–3802 (2003) ArticleCAS Google Scholar
Story, C. M., Furman, M. H. & Ploegh, H. L. The cytosolic tail of class I MHC heavy chain is required for its dislocation by the human cytomegalovirus US2 and US11 gene products. Proc. Natl Acad. Sci. USA96, 8516–8521 (1999) ArticleCASADS Google Scholar
Gillece, P., Luz, J. M., Lennarz, W. J., de La Cruz, F. J. & Romisch, K. Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J. Cell Biol.147, 1443–1456 (1999) ArticleCAS Google Scholar
Nishikawa, S. I., Fewell, S. W., Kato, Y., Brodsky, J. L. & Endo, T. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J. Cell Biol.153, 1061–1070 (2001) ArticleCAS Google Scholar
Tsai, B., Rodighiero, C., Lencer, W. I. & Rapoport, T. A. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell104, 937–948 (2001) ArticleCAS Google Scholar
Molinari, M., Calanca, V., Galli, C., Lucca, P. & Paganetti, P. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science299, 1397–1400 (2003) ArticleCAS Google Scholar
Oda, Y., Hosokawa, N., Wada, I. & Nagata, K. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science299, 1394–1397 (2003) ArticleCAS Google Scholar
Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D. H. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J.15, 753–763 (1996) ArticleCAS Google Scholar
Vashist, S. & Ng, D. T. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol.165, 41–52 (2004) ArticleCAS Google Scholar
Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell101, 249–258 (2000) ArticleCAS Google Scholar
Hitt, R. & Der Wolf, D. H. 1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins. FEMS Yeast Res.4, 721–729 (2004) ArticleCAS Google Scholar
Kryukov, G. V. et al. Characterization of mammalian selenoproteomes. Science300, 1439–1443 (2003) ArticleCASADS Google Scholar
DeLaBarre, B. & Brunger, A. T. Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nature Struct. Biol.10, 856–863 (2003) ArticleCAS Google Scholar
Flierman, D., Ye, Y., Dai, M., Chau, V. & Rapoport, T. A. Polyubiquitin serves as a recognition signal, rather than a ratcheting molecule, during retrotranslocation of proteins across the endoplasmic reticulum membrane. J. Biol. Chem.278, 34774–34782 (2003) ArticleCAS Google Scholar
Wiertz, E. J. H. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature384, 432–438 (1996) ArticleCASADS Google Scholar
Lilley, B. N., Tortorella, D. & Ploegh, H. L. Dislocation of a type I membrane protein requires interactions between membrane-spanning segments within the lipid bilayer. Mol. Biol. Cell14, 3690–3698 (2003) ArticleCAS Google Scholar
Braakman, I., Helenius, J. & Helenius, A. Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J.11, 1717–1722 (1992) ArticleCAS Google Scholar
Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature415, 92–96 (2002) ArticleCASADS Google Scholar
Plemper, R. K. et al. Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J. Cell Sci.112, 4123–4134 (1999) CASPubMed Google Scholar
Gardner, R. G. et al. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J. Cell Biol.151, 69–82 (2000) ArticleCAS Google Scholar
Frand, A. R. & Kaiser, C. A. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol. Cell1, 161–170 (1998) ArticleCAS Google Scholar
Pollard, M. G., Travers, K. J. & Weissman, J. S. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol. Cell1, 171–182 (1998) ArticleCAS Google Scholar
Gao, Y. et al. Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress—SelS is a novel glucose-regulated protein. FEBS Lett.563, 185–190 (2004) ArticleCAS Google Scholar
Akiyama, Y. & Ito, K. Reconstitution of membrane proteolysis by FtsH. J. Biol. Chem.278, 18146–18153 (2003) ArticleCAS Google Scholar
Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene263, 103–112 (2001) ArticleCAS Google Scholar
Urano, F. et al. A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response. J. Cell Biol.158, 639–646 (2002) ArticleCAS Google Scholar
Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell11, 619–633 (2003) ArticleCAS Google Scholar
Shamu, C. E., Story, C. M., Rapoport, T. A. & Ploegh, H. L. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J. Cell Biol.147, 45–58 (1999) ArticleCAS Google Scholar
Lilley, B. N. & Ploegh, H. L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature (this issue)