Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 (original) (raw)

References

  1. Hofmann, W. et al. Species-specific, postentry barriers to primate immunodeficiency virus infection. J. Virol. 73, 10020–10028 (1999)
    CAS PubMed PubMed Central Google Scholar
  2. Cowan, S. et al. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc. Natl Acad. Sci. USA 99, 11914–11919 (2002)
    Article ADS CAS Google Scholar
  3. Besnier, C., Takeuchi, Y. & Towers, G. Restriction of lentivirus in monkeys. Proc. Natl Acad. Sci. USA 99, 11920–11925 (2002)
    Article ADS CAS Google Scholar
  4. Towers, G. J. et al. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nature Med. 9, 1138–1143 (2003)
    Article CAS Google Scholar
  5. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004)
    Article ADS CAS Google Scholar
  6. Luban, J., Bossolt, K. L., Franke, E. K., Kalpana, G. V. & Goff, S. P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73, 1067–1078 (1993)
    Article CAS Google Scholar
  7. Braaten, D. & Luban, J. Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells. EMBO J. 20, 1300–1309 (2001)
    Article CAS Google Scholar
  8. Franke, E. K., Yuan, H. E. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372, 359–362 (1994)
    Article ADS CAS Google Scholar
  9. Thali, M. et al. Functional association of cyclophilin A with HIV-1 virions. Nature 372, 363–365 (1994)
    Article ADS CAS Google Scholar
  10. Fehr, T., Kallen, J., Oberer, L., Sanglier, J. J. & Schilling, W. Sanglifehrins A, B, C and D, novel cyclophilin-binding compounds isolated from Streptomyces sp. A92–308110. II. Structure elucidation, stereochemistry and physico-chemical properties. J. Antibiot. (Tokyo) 52, 474–479 (1999)
    Article CAS Google Scholar
  11. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003)
    Article CAS Google Scholar
  12. Kazazian, H. H. Jr Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004)
    Article ADS CAS Google Scholar
  13. Feng, Q., Moran, J. V., Kazazian, H. H. Jr & Boeke, J. D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996)
    Article CAS Google Scholar
  14. Zhang, Z., Harrison, P. M., Liu, Y. & Gerstein, M. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res. 13, 2541–2558 (2003)
    Article CAS Google Scholar
  15. Xu, L. et al. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5δ. Exp. Cell Res. 288, 84–93 (2003)
    Article CAS Google Scholar
  16. Schwartz, O., Marechal, V., Friguet, B., Arenzana-Seisdedos, F. & Heard, J. M. Antiviral activity of the proteasome on incoming human immunodeficiency virus type 1. J. Virol. 72, 3845–3850 (1998)
    CAS PubMed PubMed Central Google Scholar
  17. Reymond, A. et al. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140–2151 (2001)
    Article CAS Google Scholar
  18. Wu, J., Matunis, M. J., Kraemer, D., Blobel, G. & Coutavas, E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem. 270, 14209–14213 (1995)
    Article CAS Google Scholar
  19. McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl Acad. Sci. USA 36, 344–355 (1950)
    Article ADS CAS Google Scholar
  20. Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nature Genet. 24, 363–367 (2000)
    Article CAS Google Scholar
  21. Wei, W. et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429–1439 (2001)
    Article CAS Google Scholar
  22. Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nature Genet. 35, 41–48 (2003)
    Article CAS Google Scholar
  23. Gilbert, W. Why genes in pieces? Nature 271, 501 (1978)
    Article ADS CAS Google Scholar
  24. Moran, J. V., DeBerardinis, R. J. & Kazazian, H. H. Jr Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999)
    ADS CAS Google Scholar
  25. Damert, A., Lower, J. & Lower, R. Leptin receptor isoform 219.1: an example of protein evolution by LINE-1-mediated human-specific retrotransposition of a coding SVA element. Mol. Biol. Evol. 21, 647–651 (2004)
    Article CAS Google Scholar
  26. Ejima, Y. & Yang, L. Trans mobilization of genomic DNA as a mechanism for retrotransposon-mediated exon shuffling. Hum. Mol. Genet. 12, 1321–1328 (2003)
    Article CAS Google Scholar
  27. Long, M. & Langley, C. H. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260, 91–95 (1993)
    Article ADS CAS Google Scholar
  28. Roy-Engel, A. M. et al. Non-traditional Alu evolution and primate genomic diversity. J. Mol. Biol. 316, 1033–1040 (2002)
    Article CAS Google Scholar
  29. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002)
    Article ADS CAS Google Scholar
  30. Asmal, M. et al. Production of ribosome components in effector CD4 + T cells is accelerated by TCR stimulation and coordinated by ERK-MAPK. Immunity 19, 535–548 (2003)
    Article CAS Google Scholar

Download references