The ring of life provides evidence for a genome fusion origin of eukaryotes (original) (raw)
References
Lake, J. A., Sabatini, D. D. & Nonomura, Y. in Ribosomes (eds Nomura, M., Tissieres, A. & Lengyel, P.) 543–557 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1974) Google Scholar
Dayhoff, M. O. Atlas of Protein Sequence and Structure (National Biomedical Research Foundation, Silver Spring, Maryland, 1972) Google Scholar
Pace, N. R., Olsen, G. J. & Woese, C. R. Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell45, 325–326 (1986) ArticleCASPubMed Google Scholar
Lake, J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of ribosomal RNA sequences. Nature331, 184–186 (1988) ArticleADSCASPubMed Google Scholar
Galtier, N., Tourasse, N. & Gouy, M. A nonhyperthermophilic common ancestor to extant life forms. Science283, 220–221 (1999) ArticleCASPubMed Google Scholar
Gogarten, J. P. et al. Evolution of the vacuolar H + -Atpase—implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA86, 6661–6665 (1989) ArticleADSCASPubMedPubMed Central Google Scholar
Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA86, 9355–9359 (1989) ArticleADSCASPubMedPubMed Central Google Scholar
Martin, W., Mustafa, A. Z., Henze, K. & Schnarrenberger, C. Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: Origins via duplication rather than prokaryote-eukaryote divergence. Plant Mol. Biol.32, 485–491 (1996) ArticleCASPubMed Google Scholar
Brown, J. R. & Doolittle, W. F. Archaea and the prokaryote-to-eukaryote transition. Microbiol. Mol. Biol. Rev.61, 456–502 (1997) CASPubMedPubMed Central Google Scholar
Feng, D. F., Cho, G. & Doolittle, R. F. Determining divergence times with a protein clock: Update and reevaluation. Proc. Natl Acad. Sci. USA94, 13028–13033 (1997) ArticleADSCASPubMedPubMed Central Google Scholar
Gupta, R. S. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev.62, 1435–1491 (1998) CASPubMedPubMed Central Google Scholar
Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA95, 6239–6244 (1998) ArticleADSCASPubMedPubMed Central Google Scholar
Esser, C. et al. A genome phylogeny for mitochondria among α-Proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. doi:10.1093/molbev/msh160 (2004)
Karlin, S., Mrazek, J. & Campbell, A. M. Compositional biases of bacterial genomes and evolutionary implications. J. Bacteriol.179, 3899–3913 (1997) ArticleCASPubMedPubMed Central Google Scholar
Gogarten, J. P., Hilario, E. & Olendzenski, L. The tree of life. ASM News63, 404–405 (1997) Google Scholar
Doolittle, W. F. Phylogenetic classification and the universal tree. Science284, 2124–2128 (1999) ArticleCASPubMed Google Scholar
Lake, J. A. & Rivera, M. C. Deriving the genomic tree of life in the presence of horizontal gene transfer: Conditioned Reconstruction. Mol. Biol. Evol.21, 681–690 (2004) ArticleCASPubMed Google Scholar
Dickerson, R. E. in Diffraction and Related Studies (ed. Srinivasan, R.) 227–249 (Pergamon, Oxford/New York, 1980) Google Scholar
Snel, B., Bork, P. & Huynen, M. A. Genome phylogeny based on gene content. Nature Genet.21, 108–110 (1999) ArticleCASPubMed Google Scholar
Fitz-Gibbon, S. T. & House, C. H. Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res.27, 4218–4222 (1999) ArticleCASPubMedPubMed Central Google Scholar
Tekaia, F., Lazcano, A. & Dujon, B. The genomic tree as revealed from whole proteome comparisons. Genome Res.9, 550–557 (1999) CASPubMedPubMed Central Google Scholar
Lake, J. A., Henderson, E., Clark, M. W. & Matheson, A. T. Mapping evolution with ribosome structure: Intralineage constancy and interlineage variation. Proc. Natl Acad. Sci. USA79, 5948–5952 (1982) ArticleADSCASPubMedPubMed Central Google Scholar
Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nature Rev. Genet.5, 123–135 (2004) ArticleCASPubMed Google Scholar
Gabaldon, T. & Huynen, M. A. Reconstruction of the proto mitochondrial metabolism. Science301, 609 (2003) ArticleCASPubMed Google Scholar
Adams, K. L., Daley, D. O., Qiu, Y. L., Whelan, J. & Palmer, J. D. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature408, 354–357 (2000) ArticleADSCASPubMed Google Scholar
Collura, R. V. & Stewart, C. B. Insertions and duplications of mtDNA in the nuclear genomes of old-world monkeys and hominoids. Nature378, 485–489 (1995) ArticleADSCASPubMed Google Scholar
Zischler, H., Geisert, H., vonHaseler, A. & Paabo, A. A nuclear fossil of the mitochondrial D-loop and the origin of modern humans. Nature378, 489–492 (1995) ArticleADSCASPubMed Google Scholar
Margulis, L. Origin of the Eukaryotic Cells (Yale Univ. Press, New Haven, 1970) Google Scholar
Gupta, R. S., Aitken, K., Falah, M. & Singh, B. Cloning of Giardia lamblia heat-shock protein Hsp70 homologs—Implications regarding origin of eukaryotic cells and of endoplasmic-reticulum. Proc. Natl Acad. Sci. USA91, 2895–2899 (1994) ArticleADSCASPubMedPubMed Central Google Scholar
Moreira, D. & Lopez-Garcia, P. Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: The syntrophic hypothesis. J. Mol. Evol.47, 517–530 (1998) ArticleADSCASPubMed Google Scholar
Horiike, T., Hamada, K., Kanaya, S. & Shinozawa, T. Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nature Cell Biol.3, 210–214 (2001) ArticleCASPubMed Google Scholar
Rivera, M. C. & Lake, J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science257, 74–76 (1992) ArticleADSCASPubMed Google Scholar
Daubin, V., Gouy, M. & Perriere, B. A phylogenomic approach to bacterial phylogeny: Evidence of a core of genes sharing a common history. Genome Res.12, 1080–1090 (2002) ArticleCASPubMedPubMed Central Google Scholar
Brochier, C., Forterre, P. & Gribaldo, S. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol.5, R17 (2004) ArticlePubMedPubMed Central Google Scholar
Wolf, Y. I., Rogozin, I. B., Grishin, N. V., Tatusov, R. L. & Koonin, E. V. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol. Biol.1, 8 (2001) ArticleCASPubMedPubMed Central Google Scholar
Altschul, S. F. et al. Gapped BLAST and PSI_BLAST: a new generation of protein database search programs. Nucleic Acids Res.25, 3389–3402 (1997) ArticleCASPubMedPubMed Central Google Scholar
Lake, J. A. Reconstructing evolutionary trees from DNA and protein sequences—Paralinear distances. Proc. Natl Acad. Sci. USA91, 1455–1459 (1994) ArticleADSCASPubMedPubMed Central Google Scholar
Lockhart, P. J., Steel, M. A., Hendy, M. D. & Penny, D. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol.11, 605–612 (1994) CASPubMed Google Scholar
Lake, J. A. Optimally recovering rate variation information from genomes and sequences: Pattern filtering. Mol. Biol. Evol.15, 1224–1231 (1998) ArticleCASPubMed Google Scholar
Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl Acad. Sci. USA87, 4576–4579 (1990) ArticleADSCASPubMedPubMed Central Google Scholar