The ring of life provides evidence for a genome fusion origin of eukaryotes (original) (raw)

References

  1. Lake, J. A., Sabatini, D. D. & Nonomura, Y. in Ribosomes (eds Nomura, M., Tissieres, A. & Lengyel, P.) 543–557 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1974)
    Google Scholar
  2. Woese, C. R. Archaebacteria. Sci. Am. 244, 98–105 (1981)
    Article CAS Google Scholar
  3. Dayhoff, M. O. Atlas of Protein Sequence and Structure (National Biomedical Research Foundation, Silver Spring, Maryland, 1972)
    Google Scholar
  4. Pace, N. R., Olsen, G. J. & Woese, C. R. Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 45, 325–326 (1986)
    Article CAS PubMed Google Scholar
  5. Lake, J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of ribosomal RNA sequences. Nature 331, 184–186 (1988)
    Article ADS CAS PubMed Google Scholar
  6. Galtier, N., Tourasse, N. & Gouy, M. A nonhyperthermophilic common ancestor to extant life forms. Science 283, 220–221 (1999)
    Article CAS PubMed Google Scholar
  7. Gogarten, J. P. et al. Evolution of the vacuolar H + -Atpase—implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661–6665 (1989)
    Article ADS CAS PubMed PubMed Central Google Scholar
  8. Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355–9359 (1989)
    Article ADS CAS PubMed PubMed Central Google Scholar
  9. Martin, W., Mustafa, A. Z., Henze, K. & Schnarrenberger, C. Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: Origins via duplication rather than prokaryote-eukaryote divergence. Plant Mol. Biol. 32, 485–491 (1996)
    Article CAS PubMed Google Scholar
  10. Brown, J. R. & Doolittle, W. F. Archaea and the prokaryote-to-eukaryote transition. Microbiol. Mol. Biol. Rev. 61, 456–502 (1997)
    CAS PubMed PubMed Central Google Scholar
  11. Feng, D. F., Cho, G. & Doolittle, R. F. Determining divergence times with a protein clock: Update and reevaluation. Proc. Natl Acad. Sci. USA 94, 13028–13033 (1997)
    Article ADS CAS PubMed PubMed Central Google Scholar
  12. Gupta, R. S. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1435–1491 (1998)
    CAS PubMed PubMed Central Google Scholar
  13. Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA 95, 6239–6244 (1998)
    Article ADS CAS PubMed PubMed Central Google Scholar
  14. Esser, C. et al. A genome phylogeny for mitochondria among α-Proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. doi:10.1093/molbev/msh160 (2004)
  15. Karlin, S., Mrazek, J. & Campbell, A. M. Compositional biases of bacterial genomes and evolutionary implications. J. Bacteriol. 179, 3899–3913 (1997)
    Article CAS PubMed PubMed Central Google Scholar
  16. Gogarten, J. P., Hilario, E. & Olendzenski, L. The tree of life. ASM News 63, 404–405 (1997)
    Google Scholar
  17. Doolittle, W. F. Phylogenetic classification and the universal tree. Science 284, 2124–2128 (1999)
    Article CAS PubMed Google Scholar
  18. Campbell, A. M. Lateral gene transfer in prokaryotes. Theor. Popul. Biol. 57, 71–77 (2000)
    Article CAS PubMed Google Scholar
  19. Ochman, H. & Jones, I. B. Evolutionary dynamics of full genome content in Escherichia coli. EMBO J. 19, 6637–6643 (2000)
    Article CAS PubMed PubMed Central Google Scholar
  20. Lake, J. A. & Rivera, M. C. Deriving the genomic tree of life in the presence of horizontal gene transfer: Conditioned Reconstruction. Mol. Biol. Evol. 21, 681–690 (2004)
    Article CAS PubMed Google Scholar
  21. Dickerson, R. E. in Diffraction and Related Studies (ed. Srinivasan, R.) 227–249 (Pergamon, Oxford/New York, 1980)
    Google Scholar
  22. Snel, B., Bork, P. & Huynen, M. A. Genome phylogeny based on gene content. Nature Genet. 21, 108–110 (1999)
    Article CAS PubMed Google Scholar
  23. Fitz-Gibbon, S. T. & House, C. H. Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res. 27, 4218–4222 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  24. Tekaia, F., Lazcano, A. & Dujon, B. The genomic tree as revealed from whole proteome comparisons. Genome Res. 9, 550–557 (1999)
    CAS PubMed PubMed Central Google Scholar
  25. Montague, M. G. & Hutchison, C. A. Gene content phylogeny of herpesviruses. Proc. Natl Acad. Sci. USA 97, 5334–5339 (2000)
    Article ADS CAS PubMed PubMed Central Google Scholar
  26. Lake, J. A., Henderson, E., Clark, M. W. & Matheson, A. T. Mapping evolution with ribosome structure: Intralineage constancy and interlineage variation. Proc. Natl Acad. Sci. USA 79, 5948–5952 (1982)
    Article ADS CAS PubMed PubMed Central Google Scholar
  27. Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999)
    Article ADS CAS PubMed Google Scholar
  28. Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nature Rev. Genet. 5, 123–135 (2004)
    Article CAS PubMed Google Scholar
  29. Gabaldon, T. & Huynen, M. A. Reconstruction of the proto mitochondrial metabolism. Science 301, 609 (2003)
    Article CAS PubMed Google Scholar
  30. Adams, K. L., Daley, D. O., Qiu, Y. L., Whelan, J. & Palmer, J. D. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408, 354–357 (2000)
    Article ADS CAS PubMed Google Scholar
  31. Gray, M. W. Evolution of organellar genomes. Curr. Opin. Genet. Dev. 9, 678–687 (1999)
    Article CAS PubMed Google Scholar
  32. Collura, R. V. & Stewart, C. B. Insertions and duplications of mtDNA in the nuclear genomes of old-world monkeys and hominoids. Nature 378, 485–489 (1995)
    Article ADS CAS PubMed Google Scholar
  33. Zischler, H., Geisert, H., vonHaseler, A. & Paabo, A. A nuclear fossil of the mitochondrial D-loop and the origin of modern humans. Nature 378, 489–492 (1995)
    Article ADS CAS PubMed Google Scholar
  34. Margulis, L. Origin of the Eukaryotic Cells (Yale Univ. Press, New Haven, 1970)
    Google Scholar
  35. Gupta, R. S., Aitken, K., Falah, M. & Singh, B. Cloning of Giardia lamblia heat-shock protein Hsp70 homologs—Implications regarding origin of eukaryotic cells and of endoplasmic-reticulum. Proc. Natl Acad. Sci. USA 91, 2895–2899 (1994)
    Article ADS CAS PubMed PubMed Central Google Scholar
  36. Martin, W. & Muller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998)
    Article ADS CAS PubMed Google Scholar
  37. Lake, J. A. & Rivera, M. C. Was the nucleus the 1st endosymbiont. Proc. Natl Acad. Sci. USA 91, 2880–2881 (1994)
    Article ADS CAS PubMed PubMed Central Google Scholar
  38. Moreira, D. & Lopez-Garcia, P. Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: The syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998)
    Article ADS CAS PubMed Google Scholar
  39. Horiike, T., Hamada, K., Kanaya, S. & Shinozawa, T. Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nature Cell Biol. 3, 210–214 (2001)
    Article CAS PubMed Google Scholar
  40. Rivera, M. C. & Lake, J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257, 74–76 (1992)
    Article ADS CAS PubMed Google Scholar
  41. Daubin, V., Gouy, M. & Perriere, B. A phylogenomic approach to bacterial phylogeny: Evidence of a core of genes sharing a common history. Genome Res. 12, 1080–1090 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  42. Brochier, C., Forterre, P. & Gribaldo, S. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol. 5, R17 (2004)
    Article PubMed PubMed Central Google Scholar
  43. Wolf, Y. I., Rogozin, I. B., Grishin, N. V., Tatusov, R. L. & Koonin, E. V. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol. Biol. 1, 8 (2001)
    Article CAS PubMed PubMed Central Google Scholar
  44. Altschul, S. F. et al. Gapped BLAST and PSI_BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)
    Article CAS PubMed PubMed Central Google Scholar
  45. Lake, J. A. Reconstructing evolutionary trees from DNA and protein sequences—Paralinear distances. Proc. Natl Acad. Sci. USA 91, 1455–1459 (1994)
    Article ADS CAS PubMed PubMed Central Google Scholar
  46. Lockhart, P. J., Steel, M. A., Hendy, M. D. & Penny, D. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11, 605–612 (1994)
    CAS PubMed Google Scholar
  47. Lake, J. A. Calculating the probability of multitaxon evolutionary trees—Bootstrappers Gambit. Proc. Natl Acad. Sci. USA 92, 9662–9666 (1995)
    Article ADS CAS PubMed PubMed Central Google Scholar
  48. Lake, J. A. Optimally recovering rate variation information from genomes and sequences: Pattern filtering. Mol. Biol. Evol. 15, 1224–1231 (1998)
    Article CAS PubMed Google Scholar
  49. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990)
    Article ADS CAS PubMed PubMed Central Google Scholar

Download references