A faux 3′-UTR promotes aberrant termination and triggers nonsense- mediated mRNA decay (original) (raw)

References

  1. Jacobson, A. & Peltz, S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65, 693–739 (1996)
    Article CAS PubMed Google Scholar
  2. Maquat, L. E. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA 1, 453–465 (1995)
    CAS PubMed PubMed Central Google Scholar
  3. Pulak, R. & Anderson, P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 7, 1885–1897 (1993)
    Article CAS PubMed Google Scholar
  4. Gonzalez, C. I., Bhattacharya, A., Wang, W. & Peltz, S. W. Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene 274, 15–25 (2001)
    Article CAS PubMed Google Scholar
  5. Maderazo, A. B., Belk, J. P., He, F. & Jacobson, A. Nonsense-containing mRNAs that accumulate in the absence of a functional nonsense-mediated mRNA decay pathway are destabilized rapidly upon its restitution. Mol. Cell. Biol. 23, 842–851 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  6. Gatfield, D., Unterholzner, L., Ciccarelli, F. D., Bork, P. & Izaurralde, E. Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J. 22, 3960–3970 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  7. LeBlanc, J. J. & Beemon, K. L. Unspliced Rous sarcoma virus genomic RNAs are translated and subjected to nonsense-mediated mRNA decay before packaging. J. Virol. 78, 5139–5146 (2004)
    Article CAS PubMed PubMed Central Google Scholar
  8. Jacobson, A. & Peltz, S. W. in Translational Control (eds Sonenberg, N., Hershey, J. W. B. & Mathews, M. B.) 827–847 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000)
    Google Scholar
  9. Hilleren, P. & Parker, R. mRNA surveillance in eukaryotes: kinetic proofreading of proper translation termination as assessed by mRNP domain organization? RNA 5, 711–719 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  10. Sachs, M. S. et al. Toeprint analysis of the positioning of translation apparatus components at initiation and termination codons of fungal mRNAs. Methods 26, 105–114 (2002)
    Article CAS PubMed Google Scholar
  11. Maderazo, A. B., He, F., Mangus, D. A. & Jacobson, A. Upf1p control of nonsense mRNA translation is regulated by Nmd2p and Upf3p. Mol. Cell. Biol. 20, 4591–4603 (2000)
    Article CAS PubMed PubMed Central Google Scholar
  12. Bonetti, B., Fu, L., Moon, J. & Bedwell, D. M. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J. Mol. Biol. 251, 334–345 (1995)
    Article CAS PubMed Google Scholar
  13. Dmitriev, S. E., Pisarev, A. V., Rubtsova, M. P., Dunaevsky, Y. E. & Shatsky, I. N. Conversion of 48S translation preinitiation complexes into 80S initiation complexes as revealed by toeprinting. FEBS Lett. 533, 99–104 (2003)
    Article CAS PubMed Google Scholar
  14. Kozak, M. Primer extension analysis of eukaryotic ribosome–mRNA complexes. Nucleic Acids Res. 26, 4853–4859 (1998)
    Article CAS PubMed PubMed Central Google Scholar
  15. Stansfield, I., Kushnirov, V. V., Jones, K. M. & Tuite, M. F. A conditional-lethal translation termination defect in a sup45 mutant of the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 245, 557–563 (1997)
    Article CAS PubMed Google Scholar
  16. Thomas, K. R. & Capecchi, M. R. Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene. Nature 324, 34–38 (1986)
    Article ADS CAS PubMed Google Scholar
  17. Peabody, D. S. & Berg, P. Termination–reinitiation occurs in the translation of mammalian cell mRNAs. Mol. Cell. Biol. 6, 2695–2703 (1986)
    Article CAS PubMed PubMed Central Google Scholar
  18. Song, H. et al. The crystal structure of human eukaryotic release factor eRF1—mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100, 311–321 (2000)
    Article CAS PubMed Google Scholar
  19. Peltz, S. W., Brown, A. H. & Jacobson, A. mRNA destabilization triggered by premature translational termination depends on at least three _cis_-acting sequence elements and one _trans_-acting factor. Genes Dev. 7, 1737–1754 (1993)
    Article CAS PubMed Google Scholar
  20. Muhlrad, D. & Parker, R. Recognition of yeast mRNAs as ‘nonsense containing’ leads to both inhibition of mRNA translation and mRNA degradation: implications for the control of mRNA decapping. Mol. Biol. Cell 10, 3971–3978 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  21. Mangus, D. A., Evans, M. C. & Jacobson, A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 4, 223.1–223.14 (2003)
    Google Scholar
  22. Hosoda, N. et al. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J. Biol. Chem. 278, 38287–38291 (2003)
    Article CAS PubMed Google Scholar
  23. Uchida, N., Hoshino, S., Imataka, H., Sonenberg, N. & Katada, T. A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in Cap/Poly(A)-dependent translation. J. Biol. Chem. 277, 50286–50292 (2002)
    Article CAS PubMed Google Scholar
  24. Kim, V. N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon–exon junction complex. Science 293, 1832–1836 (2001)
    Article ADS CAS PubMed Google Scholar
  25. Gehring, N. H., Neu-Yilik, G., Schell, T., Hentze, M. W. & Kulozik, A. E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003)
    Article CAS PubMed Google Scholar
  26. Le Hir, H., Izaurralde, E., Maquat, L. E. & Moore, M. J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions. EMBO J. 19, 6860–6869 (2000)
    Article CAS PubMed PubMed Central Google Scholar
  27. Iizuka, N. & Sarnow, P. Translation-competent extracts from Saccharomyces cerevisiae: effects of L-A RNA, 5′ cap, and 3′ poly(A) tail on translational efficiency of mRNAs. Methods 11, 353–360 (1997)
    Article CAS PubMed Google Scholar
  28. Tarun, S. Z. Jr & Sachs, A. B. A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9, 2997–3007 (1995)
    Article CAS PubMed Google Scholar
  29. Coller, J. M., Gray, N. K. & Wickens, M. P. mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev. 12, 3226–3235 (1998)
    Article CAS PubMed PubMed Central Google Scholar
  30. Cosson, B. et al. Poly(A)-binding protein acts in translation termination via eukaryotic release factor 3 interaction and does not influence [PSI(+ )] propagation. Mol. Cell. Biol. 22, 3301–3315 (2002)
    Article CAS PubMed PubMed Central Google Scholar

Download references