The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation (original) (raw)

References

  1. Imlay, J. A. Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395–418 (2003)
    Article CAS PubMed Google Scholar
  2. Kiley, P. J. & Storz, G. Exploiting thiol modifications. PLoS Biol. 2, e400 (2004)
    Article PubMed PubMed Central Google Scholar
  3. Toledano, M. B., Delaunay, A., Monceau, L. & Tacnet, F. Microbial H2O2 sensors as archetypical redox signaling modules. Trends Biochem. Sci. 29, 351–357 (2004)
    Article CAS PubMed Google Scholar
  4. Mongkolsuk, S. & Helmann, J. D. Regulation of inducible peroxide stress responses. Mol. Microbiol. 45, 9–15 (2002)
    Article CAS PubMed Google Scholar
  5. Herbig, A. F. & Helmann, J. D. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol. Microbiol. 41, 849–859 (2001)
    Article CAS PubMed Google Scholar
  6. Helmann, J. D. et al. The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J. Bacteriol. 185, 243–253 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  7. Fuangthong, M., Herbig, A. F., Bsat, N. & Helmann, J. D. Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J. Bacteriol. 184, 3276–3286 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  8. Barford, D. The role of cysteine residues as redox-sensitive regulatory switches. Curr. Opin. Struct. Biol. 14, 679–686 (2004)
    Article CAS PubMed Google Scholar
  9. Hahn, J. S., Oh, S. Y., Chater, K. F., Cho, Y. H. & Roe, J. H. H2O2-sensitive Fur-like repressor CatR regulating the major catalase gene in Streptomyces coelicolor. J. Biol. Chem. 275, 38254–38260 (2000)
    Article CAS PubMed Google Scholar
  10. Ortiz de Orue Lucana, D., Troller, M. & Schrempf, H. Amino acid residues involved in reversible thiol formation and zinc ion binding in the Streptomyces reticuli redox regulator FurS. Mol. Genet. Genomics 268, 618–627 (2003)
    Article CAS PubMed Google Scholar
  11. Pohl, E. et al. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol. Microbiol. 47, 903–915 (2003)
    Article CAS PubMed Google Scholar
  12. Chen, L., Keramati, L. & Helmann, J. D. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc. Natl Acad. Sci. USA 92, 8190–8194 (1995)
    Article ADS CAS PubMed PubMed Central Google Scholar
  13. Lee, C. et al. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. 11, 1179–1185 (2004)
    Article CAS PubMed Google Scholar
  14. Uchida, K. & Kawakishi, S. Identification of oxidized histidine generated at the active site of Cu,Zn-superoxide dismutase exposed to H2O2. Selective generation of 2-oxo-histidine at the histidine 118. J. Biol. Chem. 269, 2405–2410 (1994)
    Article CAS PubMed Google Scholar
  15. Uchida, K. & Kawakishi, S. 2-Oxo-histidine as a novel biological marker for oxidatively modified proteins. FEBS Lett. 332, 208–210 (1993)
    Article CAS PubMed Google Scholar
  16. Schoneich, C. Mechanisms of metal-catalyzed oxidation of histidine to 2-oxo-histidine in peptides and proteins. J. Pharm. Biomed. Anal. 21, 1093–1097 (2000)
    Article CAS PubMed Google Scholar
  17. Jewett, S. L., Rocklin, A. M., Ghanevati, M., Abel, J. M. & Marach, J. A. A new look at a time-worn system: oxidation of CuZn-SOD by H2O2 . Free Radic. Biol. Med. 26, 905–918 (1999)
    Article CAS PubMed Google Scholar
  18. He, C. et al. A methylation-dependent electrostatic switch controls DNA repair and transcriptional activation by E. coli Ada. Mol. Cell 20, 117–129 (2005)
    Article CAS PubMed Google Scholar
  19. Luo, Y. et al. Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell 106, 585–594 (2001)
    Article CAS PubMed Google Scholar
  20. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005)
    Article CAS PubMed Google Scholar
  21. Nystrom, T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 24, 1311–1317 (2005)
    Article PubMed PubMed Central Google Scholar
  22. Wright, A. F. et al. Lifespan and mitochondrial control of neurodegeneration. Nature Genet. 36, 1153–1158 (2004)
    Article CAS PubMed Google Scholar
  23. Schoneich, C. & Williams, T. D. Cu(II)-catalyzed oxidation of beta-amyloid peptide targets His13 and His14 over His6: Detection of 2-Oxo-histidine by HPLC-MS/MS. Chem. Res. Toxicol. 15, 717–722 (2002)
    Article PubMed Google Scholar
  24. Berlett, B. S., Levine, R. L., Chock, P. B., Chevion, M. & Stadtman, E. R. Antioxidant activity of Ferrozine-iron-amino acid complexes. Proc. Natl Acad. Sci. USA 98, 451–456 (2001)
    Article ADS CAS PubMed PubMed Central Google Scholar
  25. Kaltwasser, M., Wiegert, T. & Schumann, W. Construction and application of epitope- and green fluorescent protein-tagging integration vectors for Bacillus subtilis. Appl. Environ. Microbiol. 68, 2624–2628 (2002)
    Article ADS CAS PubMed PubMed Central Google Scholar
  26. Guérout-Fleury, A.-M., Frandsen, N. & Stragier, P. Plasmids for ectopic integration in Bacillus subtilis. Gene 180, 57–61 (1996)
    Article PubMed Google Scholar
  27. Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003)
    Article CAS PubMed PubMed Central Google Scholar

Download references