The physical basis of how prion conformations determine strain phenotypes (original) (raw)
References
Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci.26, 267–298 (2003) ArticleCAS Google Scholar
Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci.24, 519–550 (2001) ArticleCAS Google Scholar
King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature428, 319–323 (2004) ArticleADSCAS Google Scholar
Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature428, 323–328 (2004) ArticleADSCAS Google Scholar
Brachmann, A., Baxa, U. & Wickner, R. B. Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J.24, 3082–3092 (2005) ArticleCAS Google Scholar
Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science264, 566–569 (1994) ArticleADSCAS Google Scholar
Tuite, M. F. & Koloteva-Levin, N. Propagating prions in fungi and mammals. Mol. Cell14, 541–552 (2004) ArticleCAS Google Scholar
Shorter, J. & Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nature Rev. Genet.6, 435–450 (2005) ArticleCAS Google Scholar
Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics144, 1375–1386 (1996) CASPubMedPubMed Central Google Scholar
Kochneva-Pervukhova, N. V. et al. [PSI+] prion generation in yeast: characterization of the ‘strain’ difference. Yeast18, 489–497 (2001) ArticleCAS Google Scholar
Kushnirov, V. V. & Ter-Avanesyan, M. D. Structure and replication of yeast prions. Cell94, 13–16 (1998) ArticleCAS Google Scholar
Bradley, M. E., Edskes, H. K., Hong, J. Y., Wickner, R. B. & Liebman, S. W. Interactions among prions and prion “strains” in yeast. Proc. Natl Acad. Sci. USA99 (suppl. 4), 16392–16399 (2002) ArticleADSCAS Google Scholar
Kryndushkin, D. S., Alexandrov, I. M., Ter-Avanesyan, M. D. & Kushnirov, V. V. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem.278, 49636–49643 (2003) ArticleCAS Google Scholar
Castilla, J., Saa, P., Hetz, C. & Soto, C. In vitro generation of infectious scrapie prions. Cell121, 195–206 (2005) ArticleCAS Google Scholar
Krishnan, R. & Lindquist, S. L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature435, 765–772 (2005) ArticleADSCAS Google Scholar
Cox, B., Ness, F. & Tuite, M. Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics165, 23–33 (2003) CASPubMedPubMed Central Google Scholar
Collins, S. R., Douglass, A., Vale, R. D. & Weissman, J. S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol.2, e321 (2004) Article Google Scholar
Satpute-Krishnan, P. & Serio, T. R. Prion protein remodelling confers an immediate phenotypic switch. Nature437, 262–265 (2005) ArticleADSCAS Google Scholar
DePace, A. H. & Weissman, J. S. Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nature Struct. Biol.9, 389–396 (2002) CASPubMed Google Scholar
Ness, F., Ferreira, P., Cox, B. S. & Tuite, M. F. Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast. Mol. Cell. Biol.22, 5593–5605 (2002) ArticleCAS Google Scholar
Masel, J., Jansen, V. A. & Nowak, M. A. Quantifying the kinetic parameters of prion replication. Biophys. Chem.77, 139–152 (1999) ArticleCAS Google Scholar
Weissmann, C. The state of the prion. Nature Rev. Microbiol.2, 861–871 (2004) ArticleCAS Google Scholar
Hall, D. & Edskes, H. Silent prions lying in wait: a two-hit model of prion/amyloid formation and infection. J. Mol. Biol.336, 775–786 (2004) ArticleCAS Google Scholar
Tanaka, M., Chien, P., Yonekura, K. & Weissman, J. S. Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell121, 49–62 (2005) ArticleCAS Google Scholar
Ferreira, P. C., Ness, F., Edwards, S. R., Cox, B. S. & Tuite, M. F. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol. Microbiol.40, 1357–1369 (2001) ArticleCAS Google Scholar
Jung, G. & Masison, D. C. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr. Microbiol.43, 7–10 (2001) ArticleCAS Google Scholar
Silveira, J. R. et al. The most infectious prion protein particles. Nature437, 257–261 (2005) ArticleADSCAS Google Scholar
Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell100, 277–288 (2000) ArticleCAS Google Scholar