The physical basis of how prion conformations determine strain phenotypes (original) (raw)

References

  1. Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003)
    Article CAS Google Scholar
  2. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003)
    Article ADS CAS Google Scholar
  3. Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550 (2001)
    Article CAS Google Scholar
  4. King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004)
    Article ADS CAS Google Scholar
  5. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004)
    Article ADS CAS Google Scholar
  6. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004)
    Article ADS CAS Google Scholar
  7. Brachmann, A., Baxa, U. & Wickner, R. B. Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J. 24, 3082–3092 (2005)
    Article CAS Google Scholar
  8. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994)
    Article ADS CAS Google Scholar
  9. Tuite, M. F. & Koloteva-Levin, N. Propagating prions in fungi and mammals. Mol. Cell 14, 541–552 (2004)
    Article CAS Google Scholar
  10. Shorter, J. & Lindquist, S. Prions as adaptive conduits of memory and inheritance. Nature Rev. Genet. 6, 435–450 (2005)
    Article CAS Google Scholar
  11. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996)
    CAS PubMed PubMed Central Google Scholar
  12. Kochneva-Pervukhova, N. V. et al. [PSI+] prion generation in yeast: characterization of the ‘strain’ difference. Yeast 18, 489–497 (2001)
    Article CAS Google Scholar
  13. Kushnirov, V. V. & Ter-Avanesyan, M. D. Structure and replication of yeast prions. Cell 94, 13–16 (1998)
    Article CAS Google Scholar
  14. Bradley, M. E., Edskes, H. K., Hong, J. Y., Wickner, R. B. & Liebman, S. W. Interactions among prions and prion “strains” in yeast. Proc. Natl Acad. Sci. USA 99 (suppl. 4), 16392–16399 (2002)
    Article ADS CAS Google Scholar
  15. Kryndushkin, D. S., Alexandrov, I. M., Ter-Avanesyan, M. D. & Kushnirov, V. V. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278, 49636–49643 (2003)
    Article CAS Google Scholar
  16. Castilla, J., Saa, P., Hetz, C. & Soto, C. In vitro generation of infectious scrapie prions. Cell 121, 195–206 (2005)
    Article CAS Google Scholar
  17. Krishnan, R. & Lindquist, S. L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005)
    Article ADS CAS Google Scholar
  18. Cox, B., Ness, F. & Tuite, M. Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 165, 23–33 (2003)
    CAS PubMed PubMed Central Google Scholar
  19. Collins, S. R., Douglass, A., Vale, R. D. & Weissman, J. S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2, e321 (2004)
    Article Google Scholar
  20. Satpute-Krishnan, P. & Serio, T. R. Prion protein remodelling confers an immediate phenotypic switch. Nature 437, 262–265 (2005)
    Article ADS CAS Google Scholar
  21. DePace, A. H. & Weissman, J. S. Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nature Struct. Biol. 9, 389–396 (2002)
    CAS PubMed Google Scholar
  22. Ness, F., Ferreira, P., Cox, B. S. & Tuite, M. F. Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast. Mol. Cell. Biol. 22, 5593–5605 (2002)
    Article CAS Google Scholar
  23. Masel, J., Jansen, V. A. & Nowak, M. A. Quantifying the kinetic parameters of prion replication. Biophys. Chem. 77, 139–152 (1999)
    Article CAS Google Scholar
  24. Weissmann, C. The state of the prion. Nature Rev. Microbiol. 2, 861–871 (2004)
    Article CAS Google Scholar
  25. Hall, D. & Edskes, H. Silent prions lying in wait: a two-hit model of prion/amyloid formation and infection. J. Mol. Biol. 336, 775–786 (2004)
    Article CAS Google Scholar
  26. Tanaka, M., Chien, P., Yonekura, K. & Weissman, J. S. Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121, 49–62 (2005)
    Article CAS Google Scholar
  27. Ferreira, P. C., Ness, F., Edwards, S. R., Cox, B. S. & Tuite, M. F. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol. Microbiol. 40, 1357–1369 (2001)
    Article CAS Google Scholar
  28. Jung, G. & Masison, D. C. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr. Microbiol. 43, 7–10 (2001)
    Article CAS Google Scholar
  29. Silveira, J. R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005)
    Article ADS CAS Google Scholar
  30. Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000)
    Article CAS Google Scholar

Download references