Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science295, 851–855 (2002) ArticleADSCAS Google Scholar
Fowler, D. M. et al. Functional amyloid formation within mammalian tissue. PLoS Biol.4, 100–107 (2006) ArticleCAS Google Scholar
True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature407, 477–483 (2000) ArticleADSCAS Google Scholar
True, H. L., Berlin, I. & Lindquist, S. L. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature431, 184–187 (2004) ArticleADSCAS Google Scholar
Eaglestone, S. S., Cox, B. S. & Tuite, M. F. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J.18, 1974–1981 (1999) ArticleCAS Google Scholar
Si, K., Lindquist, S. & Kandel, E. R. A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell115, 879–891 (2003) ArticleCAS Google Scholar
Wickner, R. B. & Masison, D. C. Evidence for two prions in yeast: [URE3] and [PSI]. Curr. Top. Microbiol. Immunol.207, 147–160 (1996) CASPubMed Google Scholar
Wickner, R. B. [Ure3] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science264, 566–569 (1994) ArticleADSCAS Google Scholar
Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell5, 163–172 (2000) ArticleCAS Google Scholar
Coustou, V., Deleu, C., Saupe, S. & Begueret, J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl Acad. Sci. USA94, 9773–9778 (1997) ArticleADSCAS Google Scholar
Chien, P., Weissman, J. S. & DePace, A. H. Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem.73, 617–656 (2004) ArticleCAS Google Scholar
Tuite, M. F. & Cox, B. S. Propagation of yeast prions. Nature Rev. Mol. Cell Biol.4, 878–890 (2003) ArticleCAS Google Scholar
King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature428, 319–323 (2004) ArticleADSCAS Google Scholar
Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature428, 323–328 (2004) ArticleADSCAS Google Scholar
Bruce, M. E., McConnell, I., Fraser, H. & Dickinson, A. G. The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. J. Gen. Virol.72, 595–603 (1991) ArticleCAS Google Scholar
Caughey, B., Raymond, G. J. & Bessen, R. A. Strain-dependent differences in β-sheet conformations of abnormal prion protein. J. Biol. Chem.273, 32230–32235 (1998) ArticleCAS Google Scholar
Kocisko, D. A. et al. Cell-free formation of protease-resistant prion protein. Nature370, 471–474 (1994) ArticleADSCAS Google Scholar
Safar, J. et al. Eight prion strains have PrP(Sc) molecules with different conformations. Nature Med.4, 1157–1165 (1998) ArticleCAS Google Scholar
Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics144, 1375–1386 (1996) CASPubMedPubMed Central Google Scholar
Chien, P. & Weissman, J. S. Conformational diversity in a yeast prion dictates its seeding specificity. Nature410, 223–227 (2001) ArticleADSCAS Google Scholar
Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell100, 277–288 (2000) ArticleCAS Google Scholar
Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci.24, 519–550 (2001) ArticleCAS Google Scholar
Chernoff, Y. O. et al. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol.35, 865–876 (2000) ArticleCAS Google Scholar
Kushnirov, V. V., Kochneva-Pervukhova, N. V., Chechenova, M. B., Frolova, N. S. & Ter-Avanesyan, M. D. Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J.19, 324–331 (2000) ArticleCAS Google Scholar
Nakayashiki, T., Ebihara, K., Bannai, H. & Nakamura, Y. Yeast [PSI+] “prions” that are crosstransmissible and susceptible beyond a species barrier through a quasi-prion state. Mol. Cell7, 1121–1130 (2001) ArticleCAS Google Scholar
Resende, C. et al. The Candida albicans Sup35p protein (CaSup35p): function, prion-like behaviour and an associated polyglutamine length polymorphism. Microbiology148, 1049–1060 (2002) ArticleCAS Google Scholar
Scott, M. et al. Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell59, 847–857 (1989) ArticleCAS Google Scholar
Prusiner, S. B. et al. Transgenic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell63, 673–686 (1990) ArticleCAS Google Scholar
Collinge, J. et al. Unaltered susceptibility to BSE in transgenic mice expressing human prion protein. Nature378, 779–783 (1995) ArticleADSCAS Google Scholar
Supattapone, S. et al. Prion protein of 106 residues creates an artificial transmission barrier for prion replication in transgenic mice. Cell96, 869–878 (1999) ArticleCAS Google Scholar
Bruce, M. et al. Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Phil. Trans. R. Soc. Lond. B343, 405–411 (1994) ArticleADSCAS Google Scholar
Tanaka, M., Chien, P., Yonekura, K. & Weissman, J. S. Mechanism of cross-species prion transmission: An infectious conformation compatible with two highly divergent yeast prion proteins. Cell121, 49–62 (2005) ArticleCAS Google Scholar
Hill, A. F. et al. The same prion strain causes vCJD and BSE. Nature389, 448–450 (1997) ArticleADSCAS Google Scholar
Chien, P., DePace, A. H., Collins, S. R. & Weissman, J. S. Generation of prion transmission barriers by mutational control of amyloid conformations. Nature424, 948–951 (2003) ArticleADSCAS Google Scholar
Collinge, J., Sidle, K. C., Meads, J., Ironside, J. & Hill, A. F. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature383, 685–690 (1996) ArticleADSCAS Google Scholar
Mukhopadhyay, S., Krishnan, R., Lemke, E. A., Lindquist, S. & Deniz, A. A. A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc. Natl Acad. Sci. USA104, 2649–2654 (2007) ArticleADSCAS Google Scholar
Krishnan, R. & Lindquist, S. L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature435, 765–772 (2005) ArticleADSCAS Google Scholar
Kajava, A. V., Baxa, U., Wickner, R. B. & Steven, A. C. A model for Ure2p prion filaments and other amyloids: the parallel superpleated β-structure. Proc. Natl Acad. Sci. USA101, 7885–7890 (2004) ArticleADSCAS Google Scholar
Shewmaker, F., Wickner, R. B. & Tycko, R. Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc. Natl Acad. Sci. USA103, 19754–19759 (2006) ArticleADSCAS Google Scholar
Ross, E. D., Edskes, H. K., Terry, M. J. & Wickner, R. B. Primary sequence independence for prion formation. Proc. Natl Acad. Sci. USA102, 12825–12830 (2005) ArticleADSCAS Google Scholar
Ross, E. D., Baxa, U. & Wickner, R. B. Scrambled prion domains form prions and amyloid. Mol. Cell. Biol.24, 7206–7213 (2004) ArticleCAS Google Scholar
DePace, A. H., Santoso, A., Hillner, P. & Weissman, J. S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell93, 1241–1252 (1998) ArticleCAS Google Scholar
King, C. Y. Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J. Mol. Biol.307, 1247–1260 (2001) ArticleCAS Google Scholar
Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science289, 1317–1321 (2000) ArticleADSCAS Google Scholar
Glover, J. R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S.cerevisiae. Cell89, 811–819 (1997) ArticleCAS Google Scholar
Heckman, D. S. et al. Molecular evidence for the early colonization of land by fungi and plants. Science293, 1129–1133 (2001) ArticleCAS Google Scholar
Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature435, 773–778 (2005) ArticleADSCAS Google Scholar
Zhao, Z. G., Im, J. S., Lam, K. S. & Lake, D. F. Site-specific modification of a single-chain antibody using a novel glyoxylyl-based labeling reagent. Bioconjugat. Chem.10, 424–430 (1999) ArticleCAS Google Scholar
Frank, R. The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports–principles and applications. J. Immunol. Methods267, 13–26 (2002) ArticleCAS Google Scholar