The structural basis of yeast prion strain variants (original) (raw)

References

  1. Cohen, F. E. & Prusiner, S. B. Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67, 793–819 (1998)
    Article CAS Google Scholar
  2. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [_PSI_] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996)
    Article CAS Google Scholar
  3. Tuite, M. F. & Cox, B. S. The [PSI+] prion of yeast: a problem of inheritance. Methods 39, 9–22 (2006)
    Article CAS Google Scholar
  4. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)
    Article CAS Google Scholar
  5. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004)
    Article ADS CAS Google Scholar
  6. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005)
    Article ADS CAS Google Scholar
  7. Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007)
    Article ADS CAS Google Scholar
  8. Tanaka, M., Collins, S. R., Toyama, B. H. & Weissman, J. S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006)
    Article ADS CAS Google Scholar
  9. Glover, J. R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997)
    Article CAS Google Scholar
  10. Sparrer, H. E., Santoso, A., Szoka, F. C. & Weissman, J. S. Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by _in vitro_-converted Sup35 protein. Science 289, 595–599 (2000)
    Article ADS CAS Google Scholar
  11. King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004)
    Article ADS CAS Google Scholar
  12. Krishnan, R. & Lindquist, S. L. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005)
    Article ADS CAS Google Scholar
  13. Shewmaker, F., Wickner, R. B. & Tycko, R. Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc. Natl Acad. Sci. USA 103, 19754–19759 (2006)
    Article ADS CAS Google Scholar
  14. Liu, J. J., Sondheimer, N. & Lindquist, S. L. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion. Proc. Natl Acad. Sci. USA [PSI+]. 99 (suppl. 4). 16446–16453 (2002)
    Article ADS CAS Google Scholar
  15. Flaux, J., Bertelsen, E. B., Horwich, A. L. & Wuthrich, K. NMR analysis of a 900K GroEL–GroES complex. Nature 418, 207–211 (2002)
    Article ADS Google Scholar
  16. Hoshino, M. et al. Mapping the core of the β2-microglobulin amyloid fibril by H/D exchange. Nature Struct. Biol. 9, 332–336 (2002)
    Article CAS Google Scholar
  17. Yamaguchi, K. et al. Core and heterogeneity of β2-microglobulin amyloid fibrils as revealed by H/D exchange. J. Mol. Biol. 338, 559–571 (2004)
    Article CAS Google Scholar
  18. Ritter, C. et al. Correlation of structural elements and infectivity of the HET-s prion. Nature 435, 844–848 (2005)
    Article ADS CAS Google Scholar
  19. Luhrs, T. et al. 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc. Natl Acad. Sci. USA 102, 17342–17347 (2005)
    Article ADS CAS Google Scholar
  20. Carulla, N. et al. Molecular recycling within amyloid fibrils. Nature 436, 554–558 (2005)
    Article ADS CAS Google Scholar
  21. Chien, P., DePace, A. H., Collins, S. R. & Weissman, J. S. Generation of prion transmission barriers by mutational control of amyloid conformations. Nature 424, 948–951 (2003)
    Article ADS CAS Google Scholar
  22. DePace, A. H. & Weissman, J. S. Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nature Struct. Biol. 9, 389–396 (2002)
    CAS PubMed Google Scholar
  23. Ross, E. D., Edskes, H. K., Terry, M. J. & Wickner, R. B. Primary sequence independence for prion formation. Proc. Natl Acad. Sci. USA 102, 12825–12830 (2005)
    Article ADS CAS Google Scholar
  24. Tessier, P. M. & Lindquist, S. Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 447, 556–561 (2007)
    Article ADS CAS Google Scholar
  25. King, C. Y. Supporting the structural basis of prion strains: induction and identification of [_PSI_] variants. J. Mol. Biol. 307, 1247–1260 (2001)
    Article CAS Google Scholar
  26. DePace, A. H., Santoso, A., Hillner, P. & Weissman, J. S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252 (1998)
    Article CAS Google Scholar
  27. Osherovich, L. Z., Cox, B. S., Tuite, M. F. & Weissman, J. S. Dissection and design of yeast prions. PLoS Biol. 2, E86 (2004)
    Article Google Scholar
  28. Crist, C. G., Nakayashiki, T., Kurahashi, H. & Nakamura, Y. [_PHI+_], a novel Sup35-prion variant propagated with non-Gln/Asn oligopeptide repeats in the absence of the chaperone protein Hsp104. Genes Cells 8, 603–618 (2003)
    Article CAS Google Scholar
  29. Parham, S. N., Resende, C. G. & Tuite, M. F. Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J. 20, 2111–2119 (2001)
    Article CAS Google Scholar
  30. Shkundina, I. S., Kushnirov, V. V., Tuite, M. F. & Ter-Avanesyan, M. D. The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants. Genetics 172, 827–835 (2006)
    Article CAS Google Scholar
  31. Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000)
    Article CAS Google Scholar
  32. Muchmore, D. C., McIntosh, L. P., Russell, C. B., Anderson, D. E. & Dahlquist, F. W. Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods Enzymol. 177, 44–73 (1989)
    Article CAS Google Scholar
  33. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995)
    Article CAS Google Scholar
  34. Goddard, T. D. & Kneller, D. G. SPARKY 3.112, University of California, San Francisco. (2006)
  35. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999)
    Article CAS Google Scholar
  36. Sun, Z. Y., Frueh, D. P., Selenko, P., Hoch, J. C. & Wagner, G. Fast assignment of 15N-HSQC peaks using high-resolution 3D HNcocaNH experiments with non-uniform sampling. J. Biomol. NMR 33, 43–50 (2005)
    Article CAS Google Scholar
  37. Kraulis, P. J. ANSIG: A program for the assignment of protein 1H 2D NMR spectra by interactive graphics. J. Magn. Reson. 84, 627–633 (1989)
    ADS CAS Google Scholar

Download references