Manipulation of host-cell pathways by bacterial pathogens (original) (raw)
Galan, J. E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature444, 567–573 (2006). ArticleADSCAS Google Scholar
Pizarro-Cerda, J. & Cossart, P. Bacterial adhesion and entry into host cells. Cell124, 715–727 (2006). ArticleCAS Google Scholar
Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science304, 242–248 (2004). ArticleADSCAS Google Scholar
Stevens, J. M., Galyov, E. E. & Stevens, M. P. Actin-dependent movement of bacterial pathogens. Nature Rev. Microbiol.4, 91–101 (2006). ArticleCAS Google Scholar
Finlay, B. B. Bacterial virulence strategies that utilize Rho GTPases. Curr. Top. Microbiol. Immunol.291, 1–10 (2005). CASPubMed Google Scholar
Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol.1, E183–E188 (1999). ArticleCAS Google Scholar
Gao, L. & Abu Kwaik, Y. Hijacking of apoptotic pathways by bacterial pathogens. Microbes Infect.2, 1705–1719 (2000). ArticleCAS Google Scholar
Finlay, B. B. & McFadden, G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell124, 767–782 (2006). ArticleCAS Google Scholar
Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. & Galan, J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell93, 815–826 (1998). ArticleCAS Google Scholar
Stender, S. et al. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol.36, 1206–1221 (2000). ArticleCAS Google Scholar
Zhou, D., Chen, L. M., Hernandez, L., Shears, S. B. & Galan, J. E. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol.39, 248–259 (2001). ArticleCAS Google Scholar
Alto, N. M. et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell124, 133–145 (2006). ArticleCAS Google Scholar
Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol.146, 1319–1332 (1999). ArticleCAS Google Scholar
Chakraborty, T. et al. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J.14, 1314–1321 (1995). ArticleCAS Google Scholar
Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes . Nature385, 265–269 (1997). ArticleADSCAS Google Scholar
Grunheld, S. et al. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biol.3, 856–859 (2001). Article Google Scholar
Campellone, K. G., Robbins, D. & Leong, J. M. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell7, 217–228 (2004). ArticleCAS Google Scholar
Garmendia, J. et al. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell. Microbiol.6, 1167–1183 (2004). ArticleCAS Google Scholar
Shaner, N. C., Sanger, J. W. & Sanger, J. M. Actin and α-actinin dynamics in the adhesion and motility of EPEC and EHEC on host cells. Cell Motil. Cytoskeleton60, 104–120 (2005). ArticleCAS Google Scholar
Cantarelli, V. V. et al. Cortactin is necessary for F-actin accumulation in pedestal structures induced by enteropathogenic Escherichia coli infection. Infect. Immun.70, 2206–2209 (2002). ArticleCAS Google Scholar
Goosney, D. L., DeVinney, R. & Finlay, B. B. Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect. Immun.69, 3315–3322 (2001). ArticleCAS Google Scholar
Goosney, D. L. et al. Enteropathogenic E. coli translocated intimin receptor, Tir, interacts directly with α-actinin. Curr. Biol.10, 735–738 (2000). ArticleCAS Google Scholar
Unsworth, K. E. et al. Dynamin is required for F-actin assembly and pedestal formation by enteropathogenic Escherichia coli (EPEC). Cell. Microbiol.9, 438–449 (2007). ArticleCAS Google Scholar
Batchelor, M. et al. Involvement of the intermediate filament protein cytokeratin-18 in actin pedestal formation during EPEC infection. EMBO Rep.5, 104–110 (2004). ArticleCAS Google Scholar
Hanajima-Ozawa, M. et al. Enteropathogenic Escherichia coli, Shigella flexneri, and Listeria monocytogenes recruit a junctional protein, zonula occludens-1, to actin tails and pedestals. Infect. Immun.75, 565–573 (2007). ArticleCAS Google Scholar
Yoshida, S. et al. Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J.21, 2923–2935 (2002). ArticleCAS Google Scholar
Hardwidge, P. R. et al. Modulation of host cytoskeleton function by the enteropathogenic Escherichia coli and Citrobacter rodentium effector protein EspG. Infect. Immun.73, 2586–2594 (2005). ArticleCAS Google Scholar
Hu, L. & Kopecko, D. J. Campylobacter jejuni 81-176 associates with microtubules and dynein during invasion of human intestinal cells. Infect. Immun.67, 4171–4182 (1999). CASPubMedPubMed Central Google Scholar
Roy, C. R. & Tilney, L. G. The road less traveled: transport of Legionella to the endoplasmic reticulum. J. Cell Biol.158, 415–419 (2002). ArticleCAS Google Scholar
Knodler, L. A. & Steele-Mortimer, O. Taking possession: biogenesis of the _Salmonella_-containing vacuole. Traffic4, 587–599 (2003). ArticleCAS Google Scholar
Nagai, H. et al. A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc. Natl Acad. Sci. USA102, 826–831 (2005). ArticleADSCAS Google Scholar
Robinson, C. G. & Roy, C. R. Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila . Cell. Microbiol.8, 793–805 (2006). ArticleCAS Google Scholar
Murata, T. et al. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nature Cell Biol.8, 971–977 (2006). ArticleCAS Google Scholar
Steele-Mortimer, O., Meresse, S., Gorvel, J. P., Toh, B. H. & Finlay, B. B. Biogenesis of _Salmonella typhimurium_-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell. Microbiol.1, 33–49 (1999). ArticleCAS Google Scholar
Cuellar-Mata, P. et al. Nramp1 modifies the fusion of _Salmonella typhimurium_-containing vacuoles with cellular endomembranes in macrophages. J. Biol. Chem.277, 2258–2265 (2002). ArticleCAS Google Scholar
Drecktrah, D., Knodler, L. A., Howe, D. & Steele-Mortimer, O. Salmonella trafficking is defined by continuous dynamic interactions with the endolysosomal system. Traffic8, 212–225 (2007). ArticleCAS Google Scholar
Sansonetti, P. J., Ryter, A., Clerc, P., Maurelli, A. T. & Mounier, J. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect. Immun.51, 461–469 (1986). CASPubMedPubMed Central Google Scholar
Veiga, E. & Cossart, P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nature Cell Biol.7, 894–900 (2005). ArticleCAS Google Scholar
Shaughnessy, L. M., Hoppe, A. D., Christensen, K. A. & Swanson, J. A. Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell. Microbiol.8, 781–792 (2006). ArticleCAS Google Scholar
Terebiznik, M. R. et al. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella . Nature Cell Biol.4, 766–773 (2002). ArticleCAS Google Scholar
Prehna, G., Ivanov, M. I., Bliska, J. B. & Stebbins, C. E. Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors. Cell126, 869–880 (2006). ArticleCAS Google Scholar
McDonald, C., Vacratsis, P. O., Bliska, J. B. & Dixon, J. E. The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J. Biol. Chem.278, 18514–18523 (2003). ArticleCAS Google Scholar
Hayden, M. S., West, A. P. & Ghosh, S. NF-κB and the immune response. Oncogene25, 6758–6780 (2006). ArticleCAS Google Scholar
Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell124, 783–801 (2006). ArticleCAS Google Scholar
Perkins, N. D. Post-translational modifications regulating the activity and function of the nuclear factor κB pathway. Oncogene25, 6717–6730 (2006). ArticleCAS Google Scholar
Angot, A., Vergunst, A., Genin, S. & Peeters, N. Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog.3, e3 (2007). Article Google Scholar
Kim, D. W. et al. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc. Natl Acad. Sci. USA102, 14046–14051 (2005). ArticleADSCAS Google Scholar
Arbibe, L. et al. An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nature Immunol.8, 47–56 (2007). ArticleCAS Google Scholar
Kouzarides, T. Chromatin modifications and their function. Cell128, 693–705 (2007). ArticleCAS Google Scholar
Soloaga, A. et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J.22, 2788–2797 (2003). ArticleCAS Google Scholar
Cheminay, C., Mohlenbrink, A. & Hensel, M. Intracellular Salmonella inhibit antigen presentation by dendritic cells. J. Immunol.174, 2892–2899 (2005). ArticleCAS Google Scholar
Ashwell, J. D. The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nature Rev. Immunol.6, 532–540 (2006). ArticleCAS Google Scholar
Autenrieth, S. E. et al. Yersinia enterocolitica YopP inhibits MAP kinase-mediated antigen uptake in dendritic cells. Cell. Microbiol.9, 425–437 (2007). ArticleCAS Google Scholar
Scott, A. M. & Saleh, M. The inflammatory caspases: guardians against infections and sepsis. Cell Death Differ.14, 23–31 (2007). ArticleCAS Google Scholar
Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin-1β via Ipaf. Nature Immunol.7, 569–575 (2006). ArticleCAS Google Scholar
DeLeo, F. R. Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis9, 399–413 (2004). ArticleADSCAS Google Scholar
Wickham, M. E., Brown, N. F., Boyle, E. C., Coombes, B. K. & Finlay, B. B. Virulence is positively selected by transmission success between mammalian hosts. Curr. Biol.17, 783–788 (2007). ArticleCAS Google Scholar
Navarre, W. W. et al. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella . Science313, 236–238 (2006). ArticleADSCAS Google Scholar
Stavrinides, J., Ma, W. & Guttman, D. S. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog.2, e104 (2006). Article Google Scholar
Tobe, T. et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc. Natl Acad. Sci. USA103, 14941–14946 (2006). ArticleADSCAS Google Scholar
Labandeira-Rey, M. et al. Staphylococcus aureus Panton–Valentine leukocidin causes necrotizing pneumonia. Science315, 1130–1133 (2007). ArticleADSCAS Google Scholar
Wollert, T. et al. Extending the host range of Listeria monocytogenes by rational protein design. Cell129, 891–902 (2007). ArticleCAS Google Scholar
Lecuit, M. et al. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science292, 1722–1725 (2001). ArticleADSCAS Google Scholar
Casanova, J. L. & Abel, L. Human genetics of infectious diseases: a unified theory. EMBO J.26, 915–922 (2007). ArticleCAS Google Scholar
Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe2, 119–129 (2007). ArticleCAS Google Scholar
Rohde, J. R., Breitkreutz, A., Chenal, A., Sansonetti, P. J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe1, 77–83 (2007). ArticleCAS Google Scholar
Rytkonen, A. et al. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc. Natl Acad. Sci. USA104, 3502–3507 (2007). ArticleADS Google Scholar
Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science312, 1211–1214 (2006). ArticleADSCAS Google Scholar
Li, H. et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science315, 1000–1003 (2007). ArticleADSCAS Google Scholar
Toyotome, T. et al. Shigella protein IpaH9.8 is secreted from bacteria within mammalian cells and transported to the nucleus. J. Biol. Chem.276, 32071–32079 (2001). ArticleCAS Google Scholar
Okuda, J. et al. Shigella effector IpaH9.8 binds to a splicing factor U2AF[35] to modulate host immune responses. Biochem. Biophys. Res. Commun.333, 531–539 (2005). ArticleCAS Google Scholar
Haraga, A. & Miller, S. I. A Salmonella enterica serovar Typhimurium translocated leucine-rich repeat effector protein inhibits NF-κB-dependent gene expression. Infect. Immun.71, 4052–4058 (2003). ArticleCAS Google Scholar
Haraga, A. & Miller, S. I. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell. Microbiol.8, 837–846 (2006). ArticleCAS Google Scholar
Benabdillah, R., Mota, L. J., Lutzelschwab, S., Demoinet, E. & Cornelis, G. R. Identification of a nuclear targeting signal in YopM from Yersinia spp. Microb. Pathog.36, 247–261 (2004). ArticleCAS Google Scholar
Schornack, S., Meyer, A., Romer, P., Jordan, T. & Lahaye, T. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J. Plant Physiol.163, 256–272 (2006). ArticleCAS Google Scholar