Dong, J. et al. VEGF-null cells require PDGFR α signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J.23, 2800–2810 (2004) ArticleCASPubMedPubMed Central Google Scholar
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121, 335–348 (2005) ArticleCASPubMed Google Scholar
Rafii, S., Lyden, D., Benezra, R., Hattori, K. & Heissig, B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nature Rev. Cancer2, 826–835 (2002) ArticleCAS Google Scholar
Nolan, D. J. et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev.21, 1546–1558 (2007) ArticleCASPubMedPubMed Central Google Scholar
De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nature Med.9, 789–795 (2003) ArticleCASPubMed Google Scholar
Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell6, 409–421 (2004) ArticleCASPubMed Google Scholar
De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell8, 211–226 (2005) ArticleCASPubMed Google Scholar
Grunewald, M. et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell124, 175–189 (2006) ArticleCASPubMed Google Scholar
Shojaei, F. et al. Tumor refrectoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnol.25, 911–920 (2007) ArticleCAS Google Scholar
Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA103, 12493–12498 (2006) ArticleADSCASPubMedPubMed Central Google Scholar
van Kempen, L. C., de Visser, K. E. & Coussens, L. M. Inflammation, proteases and cancer. Eur. J. Cancer42, 728–734 (2006) ArticleCASPubMed Google Scholar
Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol.2, 737–744 (2000) ArticleCASPubMed Google Scholar
Li, M., Bullock, C. M., Knauer, D. J., Ehlert, F. J. & Zhou, Q. Y. Identification of two prokineticin cDNAs: recombinant proteins potently contract gestrointestinal smooth muscle. Mol. Pharmacol.59, 692–698 (2001) ArticleCASPubMed Google Scholar
LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature412, 877–884 (2001) ArticleADSCASPubMed Google Scholar
LeCouter, J. et al. The endocrine-gland-derived VEGF homologue Bv8 promotes angiogenesis in the testis: localization of Bv8 receptors to endothelial cells. Proc. Natl Acad. Sci. USA100, 2685–2690 (2003) ArticleADSCASPubMedPubMed Central Google Scholar
Mollay, C. et al. Bv8, a small protein from frog skin and its homologue from snake venom induce hyperalgesia in rats. Eur. J. Pharmacol.374, 189–196 (1999) ArticleCASPubMed Google Scholar
Masuda, Y. et al. Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochem. Biophys. Res. Commun.293, 396–402 (2002) ArticleCASPubMed Google Scholar
Lin, D. C. et al. Identification and molecular characterization of two closely related G protein-coupled receptors activated by prokineticins/endocrine gland vascular endothelial growth factor. J. Biol. Chem.277, 19276–19280 (2002) ArticleCASPubMed Google Scholar
LeCouter, J., Lin, R. & Ferrara, N. Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Nature Med.8, 913–917 (2002) ArticleCASPubMed Google Scholar
LeCouter, J., Zlot, C., Tejada, M., Peale, F. & Ferrara, N. Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc. Natl Acad. Sci. USA101, 16813–16818 (2004) ArticleADSCASPubMedPubMed Central Google Scholar
Dorsch, M. et al. PK1/EG-VEGF induces monocyte differentiation and activation. J. Leukoc. Biol.78, 426–434 (2005) ArticleCASPubMed Google Scholar
Dahl, R. et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPα ratio and granulocyte colony-stimulating factor. Nature Immunol.4, 1029–1036 (2003) ArticleCAS Google Scholar
Lagasse, E. & Weissman, I. L. Flow cytometric identification of murine neutrophils and monocytes. J. Immunol. Methods197, 139–150 (1996) ArticleCASPubMed Google Scholar
Metcalf, D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature339, 27–30 (1989) ArticleADSCASPubMed Google Scholar
Christopher, M. J. & Link, D. C. Regulation of neutrophil homeostasis. Curr. Opin. Hematol.14, 3–8 (2007) ArticleCASPubMed Google Scholar
Mueller, M. M. & Fusenig, N. E. Tumor–stroma interactions directing phenotype and progression of epithelial skin tumor cells. Differentiation70, 486–497 (2002) ArticlePubMed Google Scholar
Liang, W. C. et al. Cross-species VEGF-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J. Biol. Chem.281, 951–961 (2006) ArticleCASPubMed Google Scholar
Okazaki, T. et al. Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int. Immunol.18, 1–9 (2006) ArticleCASPubMed Google Scholar
Garcia-Sanz, A., Rodriguez-Barbero, A., Bentley, M. D., Ritman, E. L. & Romero, J. C. Three-dimensional microcomputed tomography of renal vasculature in rats. Hypertension31, 440–444 (1998) ArticleCASPubMed Google Scholar
Maehara, N. Experimental microcomputed tomography study of the 3D microangioarchitecture of tumors. Eur. Radiol.13, 1559–1565 (2003) ArticlePubMed Google Scholar
Kwon, H. M. et al. Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J. Clin. Invest.101, 1551–1556 (1998) ArticleCASPubMedPubMed Central Google Scholar
Neben, S., Marcus, K. & Mauch, P. Mobilization of hematopoietic stem and progenitor cell subpopulations from the marrow to the blood of mice following cyclophosphamide and/or granulocyte colony-stimulating factor. Blood81, 1960–1967 (1993) CASPubMed Google Scholar
Kavgaci, H., Ozdemir, F., Aydin, F., Yavuz, A. & Yavuz, M. Endogenous granulocyte colony-stimulating factor (G-CSF) levels in chemotherapy-induced neutropenia and in neutropenia related with primary diseases. J. Exp. Clin. Cancer Res.21, 475–479 (2002) CASPubMed Google Scholar
Cheng, M. Y. et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature417, 405–410 (2002) ArticleADSCASPubMed Google Scholar
Matsumoto, S. et al. Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc. Natl Acad. Sci. USA103, 4140–4145 (2006) ArticleADSCASPubMedPubMed Central Google Scholar
Ohki, Y. et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB J.19, 2005–2007 (2005) ArticleCASPubMed Google Scholar
Hirbe, A. C. et al. Granulocyte colony-stimulating factor enhances bone tumor growth in mice in an osteoclast-dependent manner. Blood109, 3424–3431 (2007) ArticleCASPubMedPubMed Central Google Scholar
Eyles, J. L., Roberts, A. W., Metcalf, D. & Wicks, I. P. Granulocyte colony-stimulating factor and neutrophils—forgotten mediators of inflammatory disease. Nature Clin. Pract. Rheumatol.2, 500–510 (2006) ArticleCAS Google Scholar
Tomayko, M. M. & Reynolds, C. P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol.24, 148–154 (1989) ArticleCASPubMed Google Scholar
Hida, K. et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res.64, 8249–8255 (2004) ArticleCASPubMed Google Scholar