The molecular sociology of the cell (original) (raw)
Blundell, T. L. & Johnson, L. Protein Crystallography (Academic, New York, 1976). Google Scholar
Wimberley, B. T. et al. Structure of the 30S ribosomal subunit. Nature407, 327–339 (2000). ArticleADS Google Scholar
Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å. Science289, 905–920 (2000). CASPubMedADS Google Scholar
Schluenzen, F. et al. Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell102, 615–623 (2000). ArticleCASPubMed Google Scholar
Malhotra, A. & Harvey, S. C. A quantitative model of the Escherichia coli 16S RNA in the 30S ribosomal subunit. J. Mol. Biol.240, 308–340 (1994). ArticleCASPubMed Google Scholar
Alber, F., Kim, M. F. & Sali, A. Structural characterization of assemblies from overall shape and subcomplex compositions. Structure13, 435–445 (2005). ArticleCASPubMed Google Scholar
Alber, F. et al. Determining the architectures of macromolecular assemblies. Nature450, 683–694 (2007). ArticleCASPubMedADS Google Scholar
Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. From words to literature in structural proteomics. Nature422, 216–225 (2003). ArticleCASPubMedADS Google Scholar
Hernandez, H., Dziembowski, A., Taverner, T., Seraphin, B. & Robinson, C. V. Subunit architecture of multimeric complexes isolated directly from cells. EMBO Rep.7, 605–610 (2006). ArticleCASPubMedPubMed Central Google Scholar
van Dijk, A. D. et al. Modeling protein–protein complexes involved in the cytochrome c oxidase copper-delivery pathway. J. Proteome Res.6, 1530–1539 (2007). ArticleCASPubMed Google Scholar
Todd, A. E., Marsden, R. L., Thornton, J. M. & Orengo, C. A. Progress of structural genomics initiatives: an analysis of solved target structures. J. Mol. Biol.348, 1235–1260 (2005). ArticleCASPubMed Google Scholar
Alber, F., Eswar, N. & Sali, A. in Practical Bioinformatics 1950–1954 (Springer, Heidelberg, 2004). Google Scholar
Sivasubramanian, A., Chao, G., Pressler, H. M., Wittrup, K. D. & Gray, J. J. Structural model of the mAb 806–EGFR complex using computational docking followed by computational and experimental mutagenesis. Structure14, 401–414 (2006). ArticleCASPubMed Google Scholar
Rossmann, M. G., Morais, M. C., Leiman, P. G. & Zhang, W. Combining X-ray crystallography and electron microscopy. Structure13, 355–362 (2005). ArticleCASPubMedPubMed Central Google Scholar
Fotin, A. et al. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature432, 649–653 (2004). ArticleCASPubMedADS Google Scholar
Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell91, 457–466 (1997). ArticleCASPubMed Google Scholar
Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell92, 367–380 (1998). ArticleCASPubMed Google Scholar
Lim, R. Y. & Fahrenkrog, B. The nuclear pore complex up close. Curr. Opin. Cell Biol.18, 342–347 (2006). ArticleCASPubMed Google Scholar
Beck, M., Lucic, V., Forster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature449, 611–615 (2007). ArticleCASPubMedADS Google Scholar
Meinhart, A. & Cramer, P. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature430, 223–226 (2004). ArticleCASPubMedADS Google Scholar
Liu, Q., Greimann, J. C. & Lima, C. D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell127, 1223–1237 (2006). ArticleCASPubMed Google Scholar
Egea, P. F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature427, 215–221 (2004). ArticleCASPubMedADS Google Scholar
Bonvin, A. M., Boelens, R. & Kaptein, R. NMR analysis of protein interactions. Curr. Opin. Chem. Biol.9, 501–508 (2005). ArticleCASPubMed Google Scholar
Zuiderweg, E. R. Mapping protein–protein interactions in solution by NMR spectroscopy. Biochemistry41, 1–7 (2002). ArticleCASPubMed Google Scholar
McCoy, M. A. & Wyss, D. F. Structures of protein–protein complexes are docked using only NMR restraints from residual dipolar coupling and chemical shift perturbations. J. Am. Chem. Soc.124, 2104–2105 (2002). ArticleCASPubMed Google Scholar
Rieping, W., Habeck, M. & Nilges, M. Inferential structure determination. Science309, 303–306 (2005). ArticleCASPubMedADS Google Scholar
Vachette, P., Koch, M. H. & Svergun, D. I. Looking behind the beamstop: X-ray solution scattering studies of structure and conformational changes of biological macromolecules. Methods Enzymol.374, 584–615 (2003). ArticleCASPubMed Google Scholar
Tidow, H. et al. Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex. Proc. Natl Acad. Sci. USA104, 12324–12329 (2007). ArticleCASPubMedADSPubMed Central Google Scholar
Grishaev, A., Wu, J., Trewhella, J. & Bax, A. Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data. J. Am. Chem. Soc.127, 16621–16628 (2005). ArticleCASPubMed Google Scholar
Rosenberg, O. S., Deindl, S., Sung, R. J., Nairn, A. C. & Kuriyan, J. Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell123, 849–860 (2005). ArticleCASPubMed Google Scholar
Sondermann, H., Nagar, B., Bar-Sagi, D. & Kuriyan, J. Computational docking and solution X-ray scattering predict a membrane-interacting role for the histone domain of the Ras activator son of sevenless. Proc. Natl Acad. Sci. USA102, 16632–16637 (2005). ArticleCASPubMedADSPubMed Central Google Scholar
Yamagata, A. & Tainer, J. A. Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. EMBO J.26, 878–890 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hainfeld, J. F. & Powell, R. D. New frontiers in gold labeling. J. Histochem. Cytochem.48, 471–480 (2000). ArticleCASPubMed Google Scholar
Guan, J. Q., Almo, S. C., Reisler, E. & Chance, M. R. Structural reorganization of proteins revealed by radiolysis and mass spectrometry: G-actin solution structure is divalent cation dependent. Biochemistry42, 11992–12000 (2003). ArticleCASPubMed Google Scholar
Anand, G. S. et al. Identification of the protein kinase A regulatory RIα-catalytic subunit interface by amide H/2H exchange and protein docking. Proc. Natl Acad. Sci. USA100, 13264–13269 (2003). ArticleCASPubMedADSPubMed Central Google Scholar
Lee, T. et al. Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry. Mol. Cell14, 43–55 (2004). ArticleCASPubMed Google Scholar
Yan, Y. & Marriott, G. Analysis of protein interactions using fluorescence technologies. Curr. Opin. Chem. Biol.7, 635–640 (2003). ArticleCASPubMed Google Scholar
Gavin, A. C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature440, 631–636 (2006). ArticleCASPubMedADS Google Scholar
Sharon, M., Taverner, T., Ambroggio, X. I., Deshaies, R. J. & Robinson, C. V. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol.4, e267 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Parrish, J. R., Gulyas, K. D. & Finley, R. L. Yeast two-hybrid contributions to interactome mapping. Curr. Opin. Biotechnol.17, 387–393 (2006). ArticleCASPubMed Google Scholar
Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae . Nature403, 623–627 (2000). ArticleCASPubMedADS Google Scholar
Michnick, S. W., Ear, P. H., Manderson, E. N., Remy, I. & Stefan, E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nature Rev. Drug Discov.6, 569–582 (2007). ArticleCAS Google Scholar
MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science289, 1760–1763 (2000). ArticleCASPubMedADS Google Scholar
Piehler, J. New methodologies for measuring protein interactions in vivo and in vitro . Curr. Opin. Struct. Biol.15, 4–14 (2005). ArticleCASPubMed Google Scholar
Collins, S. R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature446, 806–810 (2007). ArticleCASPubMedADS Google Scholar
Krogan, N. J., Cagney, G., Haiyuan, Y., Zhong, G. & Guo, X. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae . Nature440, 637–643 (2006). ArticleCASPubMedADS Google Scholar
Collins, S. R. et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae . Mol. Cell. Proteomics6, 439–450 (2007). ArticleCASPubMed Google Scholar
Bauer, A. & Kuster, B. Affinity purification — mass spectrometry. Powerful tools for the characterization of protein complexes. Eur. J. Biochem.270, 570–578 (2003). ArticleCASPubMed Google Scholar
Poliakov, A. et al. Macromolecular mass spectrometry and electron microscopy as complementary tools for investigation of the heterogeneity of bacteriophage portal assemblies. J. Struct. Biol.157, 371–383 (2007). ArticleCASPubMed Google Scholar
Hernandez, H. & Robinson, C. V. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nature Protoc.2, 715–726 (2007). ArticleCAS Google Scholar
Lorentzen, E. et al. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nature Struct. Mol. Biol.12, 575–581 (2005). ArticleCASADS Google Scholar
Buttner, K., Wenig, K. & Hopfner, K. P. Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol. Cell20, 461–471 (2005). ArticlePubMedCAS Google Scholar
Aloy, P. et al. Structure-based assembly of protein complexes in yeast. Science303, 2026–2029 (2004). ArticleCASPubMedADS Google Scholar
Voges, D., Zwickl, P. & Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem.68, 1015–1068 (1999). ArticleCASPubMed Google Scholar
Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature386, 463–471 (1997). ArticleCASPubMedADS Google Scholar
Sprangers, R. & Kay, L. E. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature445, 618–622 (2007). ArticleCASPubMed Google Scholar
Scheres, S. H. W. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nature Methods4, 27–29 (2007). ArticleCASPubMed Google Scholar
Nickell, S. et al. Automated cryoelectron microscopy of 'single particles' applied to the 26S proteasome. FEBS Lett.581, 2751–2756 (2007). ArticleCASPubMed Google Scholar
Ferrell, K., Wilkinson, C. R., Dubiel, W. & Gordon, C. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem. Sci.25, 83–88 (2000). ArticleCASPubMed Google Scholar
Hinshaw, J. E., Carragher, B. O. & Milligan, R. A. Architecture and design of the nuclear pore complex. Cell69, 1133–1141 (1992). ArticleCASPubMed Google Scholar
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–651 (2000). ArticleCASPubMedPubMed Central Google Scholar
Koster, A. J. et al. Perspectives of molecular and cellular electron tomography. J. Struct. Biol.120, 276–308 (1997). ArticleCASPubMed Google Scholar
Nickell, S., Kofler, C., Leis, A. P. & Baumeister, W. A visual approach to proteomics. Nature Rev. Mol. Cell. Biol.7, 225–230 (2006). ArticleCAS Google Scholar
Benesch, J. L., Ruotolo, B. T., Simmons, D. A. & Robinson, C. V. Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem. Rev.107, 3544–3567 (2007). ArticleCASPubMed Google Scholar
Lowe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science268, 533–539 (1995). ArticleCASPubMedADS Google Scholar
Unno, M. et al. The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure10, 609–618 (2002). ArticleCASPubMed Google Scholar
Kwon, Y. D., Nagy, I., Adams, P. D., Baumeister, W. & Jap, B. K. Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J. Mol. Biol.335, 233–245 (2004). ArticleCASPubMed Google Scholar
Ortiz, J. O., Forster, F., Kurner, J., Linaroudis, A. A. & Baumeister, W. Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition. J. Struct. Biol.156, 334–341 (2006). ArticleCASPubMed Google Scholar
Gabashvili, I. S. et al. Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell100, 537–549 (2000). ArticleCASPubMed Google Scholar
Sharon, M. & Robinson, C. V. The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem.76, 167–193 (2007). ArticleCASPubMed Google Scholar
Ilag, L. L. et al. Heptameric (L12)6/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria. Proc. Natl Acad Sci. USA102, 8192–8197 (2005). ArticleCASPubMedADSPubMed Central Google Scholar
Synowsky, S. A., van den Heuvel, R. H., Mohammed, S., Pijnappel, P. W. & Heck, A. J. Probing genuine strong interactions and post-translational modifications in the heterogeneous yeast exosome protein complex. Mol. Cell. Proteomics5, 1581–1592 (2006). ArticleCASPubMed Google Scholar
Back, J. W., de Jong, L., Muijsers, A. O. & de Koster, C. G. Chemical cross-linking and mass spectrometry for protein structural modeling. J. Mol. Biol.331, 303–313 (2003). ArticleCASPubMed Google Scholar
Vasilescu, J. & Figeys, D. Mapping protein–protein interactions by mass spectrometry. Curr. Opin. Biotechnol.17, 394–399 (2006). ArticleCASPubMed Google Scholar
von Helden, G., Wyttenbach, T. & Bowers, M. T. Conformation of macromolecules in the gas phase: use of matrix-assisted laser desorption methods in ion chromatography. Science267, 1483–1485 (1995). ArticleCASPubMedADS Google Scholar
Ruotolo, B. T. et al. Evidence for macromolecular protein rings in the absence of bulk water. Science310, 1658–1661 (2005). ArticleCASPubMedADS Google Scholar
Ruotolo, B. T. et al. Ion mobility–mass spectrometry reveals long-lived, unfolded intermediates in the dissociation of protein complexes. Angew. Chem. Int. Ed. Engl.46, 8001–8004 (2007). ArticleCASPubMed Google Scholar
Henderson, R. Realizing the potential of electron cryo-microscopy. Q. Rev. Biophys.37, 3–13 (2004). ArticleCASPubMed Google Scholar
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol.151, 41–60 (2005). ArticleCASPubMed Google Scholar
Johnson, J. E. & Chiu, W. DNA packaging and delivery machines in tailed bacteriophages. Curr. Opin. Struct. Biol.17, 237–243 (2007). ArticleCASPubMed Google Scholar
Taylor, D. J. et al. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J.26, 2421–2431 (2007). ArticleCASPubMedPubMed Central Google Scholar
Stark, H. & Luhrmann, R. Cryo-electron microscopy of spliceosomal components. Annu. Rev. Biophys. Biomol. Struct.35, 435–457 (2006). ArticleCASPubMed Google Scholar
Fath, S., Mancias, J. D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell129, 1325–1336 (2007). ArticleCASPubMed Google Scholar
Mitra, K. & Frank, J. Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps. Annu. Rev. Biophys. Biomol. Struct.35, 299–317 (2006). ArticleCASPubMed Google Scholar