Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling (original) (raw)
References
Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med.11, 1351–1354 (2005) ArticleCAS Google Scholar
Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I. & Clarke, M. F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev.14, 43–47 (2004) ArticleCAS Google Scholar
Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature434, 843–850 (2005) ArticleADSCAS Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001) ArticleADSCAS Google Scholar
Mackenzie, I. C. Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure. J. Invest. Dermatol.109, 377–383 (1997) ArticleCAS Google Scholar
Trempus, C. S. et al. CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res.67, 4173–4181 (2007) ArticleCAS Google Scholar
Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004) ArticleCAS Google Scholar
Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science303, 359–363 (2004) ArticleADSCAS Google Scholar
Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol.121, 963–968 (2003) ArticleCAS Google Scholar
Quintanilla, M., Brown, K., Ramsden, M. & Balmain, A. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature322, 78–80 (1986) ArticleADSCAS Google Scholar
Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell1, 313–323 (2007) ArticleCAS Google Scholar
Gaspar, C. et al. Intracellular β-catenin accumulation underlies cancer stemness and metastatic behaviour in an Apc mouse model for mammary tumorigenesis. Nature (submitted)
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003) ArticleADSCAS Google Scholar
O’Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007) ArticleADS Google Scholar
Morris, R. J. Keratinocyte stem cells: targets for cutaneous carcinogens. J. Clin. Invest.106, 3–8 (2000) ArticleCAS Google Scholar
Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105, 533–545 (2001) ArticleCAS Google Scholar
Merrill, B. J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev.15, 1688–1705 (2001) ArticleCAS Google Scholar
Andl, T., Reddy, S. T., Gaddapara, T. & Millar, S. E. Wnt signals are required for the initiation of hair follicle development. Dev. Cell2, 643–653 (2002) ArticleCAS Google Scholar
Niemann, C., Owens, D. M., Huelsken, J., Birchmeier, W. & Watt, F. M. Expression of ΔNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development129, 95–109 (2002) CASPubMed Google Scholar
Chan, E. F., Gat, U., McNiff, J. M. & Fuchs, E. A common human skin tumour is caused by activating mutations in β-catenin. Nature Genet.21, 410–413 (1999) ArticleCAS Google Scholar
Lustig, B. et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell. Biol.22, 1184–1193 (2002) ArticleCAS Google Scholar
Leder, A., Kuo, A., Cardiff, R. D., Sinn, E. & Leder, P. v-Ha-ras transgene abrogates the initiation step in mouse skin tumorigenesis: effects of phorbol esters and retinoic acid. Proc. Natl Acad. Sci. USA87, 9178–9182 (1990) ArticleADSCAS Google Scholar
Brasanac, D., Boricic, I., Todorovic, V., Tomanovic, N. & Radojevic, S. Cyclin A and β-catenin expression in actinic keratosis, Bowen’s disease and invasive squamous cell carcinoma of the skin. Br. J. Dermatol.153, 1166–1175 (2005) ArticleCAS Google Scholar
Doglioni, C. et al. Alterations of β-catenin pathway in non-melanoma skin tumors: loss of α-ABC nuclear reactivity correlates with the presence of β-catenin gene mutation. Am. J. Pathol.163, 2277–2287 (2003) ArticleCAS Google Scholar
Papadavid, E., Pignatelli, M., Zakynthinos, S., Krausz, T. & Chu, A. C. Abnormal immunoreactivity of the E-cadherin/catenin (α-, β-, and γ-) complex in premalignant and malignant non-melanocytic skin tumours. J. Pathol.196, 154–162 (2002) ArticleCAS Google Scholar
Oskarsson, T. et al. Skin epidermis lacking the c-Myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the _p21_Cip1 gene. Genes Dev.20, 2024–2029 (2006) ArticleCAS Google Scholar
Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J.18, 5931–5942 (1999) ArticleCAS Google Scholar
Li, M. et al. Skin abnormalities generated by temporally controlled RXRα mutations in mouse epidermis. Nature407, 633–636 (2000) ArticleADSCAS Google Scholar
Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol.1, 4 (2001) ArticleCAS Google Scholar
van de Wetering, M. et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep.4, 609–615 (2003) ArticleCAS Google Scholar
Lichti, U. et al. In vivo regulation of murine hair growth: insights from grafting defined cell populations onto nude mice. J. Invest. Dermatol.101, 124–129 (1993) Article Google Scholar
Batlle, E. et al. β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell111, 251–263 (2002) ArticleCAS Google Scholar