Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling (original) (raw)

References

  1. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med. 11, 1351–1354 (2005)
    Article CAS Google Scholar
  2. Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I. & Clarke, M. F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev. 14, 43–47 (2004)
    Article CAS Google Scholar
  3. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005)
    Article ADS CAS Google Scholar
  4. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)
    Article ADS CAS Google Scholar
  5. Mackenzie, I. C. Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure. J. Invest. Dermatol. 109, 377–383 (1997)
    Article CAS Google Scholar
  6. Trempus, C. S. et al. CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res. 67, 4173–4181 (2007)
    Article CAS Google Scholar
  7. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004)
    Article CAS Google Scholar
  8. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004)
    Article ADS CAS Google Scholar
  9. Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 121, 963–968 (2003)
    Article CAS Google Scholar
  10. Quintanilla, M., Brown, K., Ramsden, M. & Balmain, A. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322, 78–80 (1986)
    Article ADS CAS Google Scholar
  11. Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313–323 (2007)
    Article CAS Google Scholar
  12. Gaspar, C. et al. Intracellular β-catenin accumulation underlies cancer stemness and metastatic behaviour in an Apc mouse model for mammary tumorigenesis. Nature (submitted)
  13. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003)
    Article ADS CAS Google Scholar
  14. O’Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007)
    Article ADS Google Scholar
  15. Morris, R. J. Keratinocyte stem cells: targets for cutaneous carcinogens. J. Clin. Invest. 106, 3–8 (2000)
    Article CAS Google Scholar
  16. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001)
    Article CAS Google Scholar
  17. Merrill, B. J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev. 15, 1688–1705 (2001)
    Article CAS Google Scholar
  18. Andl, T., Reddy, S. T., Gaddapara, T. & Millar, S. E. Wnt signals are required for the initiation of hair follicle development. Dev. Cell 2, 643–653 (2002)
    Article CAS Google Scholar
  19. Niemann, C., Owens, D. M., Huelsken, J., Birchmeier, W. & Watt, F. M. Expression of ΔNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 129, 95–109 (2002)
    CAS PubMed Google Scholar
  20. Chan, E. F., Gat, U., McNiff, J. M. & Fuchs, E. A common human skin tumour is caused by activating mutations in β-catenin. Nature Genet. 21, 410–413 (1999)
    Article CAS Google Scholar
  21. Lustig, B. et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell. Biol. 22, 1184–1193 (2002)
    Article CAS Google Scholar
  22. Leder, A., Kuo, A., Cardiff, R. D., Sinn, E. & Leder, P. v-Ha-ras transgene abrogates the initiation step in mouse skin tumorigenesis: effects of phorbol esters and retinoic acid. Proc. Natl Acad. Sci. USA 87, 9178–9182 (1990)
    Article ADS CAS Google Scholar
  23. Brasanac, D., Boricic, I., Todorovic, V., Tomanovic, N. & Radojevic, S. Cyclin A and β-catenin expression in actinic keratosis, Bowen’s disease and invasive squamous cell carcinoma of the skin. Br. J. Dermatol. 153, 1166–1175 (2005)
    Article CAS Google Scholar
  24. Doglioni, C. et al. Alterations of β-catenin pathway in non-melanoma skin tumors: loss of α-ABC nuclear reactivity correlates with the presence of β-catenin gene mutation. Am. J. Pathol. 163, 2277–2287 (2003)
    Article CAS Google Scholar
  25. Papadavid, E., Pignatelli, M., Zakynthinos, S., Krausz, T. & Chu, A. C. Abnormal immunoreactivity of the E-cadherin/catenin (α-, β-, and γ-) complex in premalignant and malignant non-melanocytic skin tumours. J. Pathol. 196, 154–162 (2002)
    Article CAS Google Scholar
  26. Oskarsson, T. et al. Skin epidermis lacking the c-Myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the _p21_Cip1 gene. Genes Dev. 20, 2024–2029 (2006)
    Article CAS Google Scholar
  27. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 18, 5931–5942 (1999)
    Article CAS Google Scholar
  28. Li, M. et al. Skin abnormalities generated by temporally controlled RXRα mutations in mouse epidermis. Nature 407, 633–636 (2000)
    Article ADS CAS Google Scholar
  29. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001)
    Article CAS Google Scholar
  30. van de Wetering, M. et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 4, 609–615 (2003)
    Article CAS Google Scholar
  31. Lichti, U. et al. In vivo regulation of murine hair growth: insights from grafting defined cell populations onto nude mice. J. Invest. Dermatol. 101, 124–129 (1993)
    Article Google Scholar
  32. Batlle, E. et al. β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251–263 (2002)
    Article CAS Google Scholar

Download references