Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy (original) (raw)
Doble, B. W. & Woodgett, J. R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci.116, 1175–1186 (2003) ArticleCAS Google Scholar
Kim, L. & Kimmel, A. R. GSK3 at the edge: regulation of developmental specification and cell polarization. Curr. Drug Targets7, 1411–1419 (2006) ArticleCAS Google Scholar
Cohen, P. & Frame, S. The renaissance of GSK3. Nature Rev. Mol. Cell Biol.2, 769–776 (2001) ArticleCAS Google Scholar
Fiol, C. J., Mahrenholz, A. M., Wang, Y., Roeske, R. W. & Roach, P. J. Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J. Biol. Chem.262, 14042–14048 (1987) CASPubMed Google Scholar
Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378, 785–789 (1995) ArticleADSCAS Google Scholar
Kaidanovich, O. & Eldar-Finkelman, H. The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Expert Opin. Ther. Targets6, 555–561 (2002) ArticleCAS Google Scholar
Hoeflich, K. P. et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature406, 86–90 (2000) ArticleADSCAS Google Scholar
Martin, M., Rehani, K., Jope, R. S. & Michalek, S. M. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nature Immunol.6, 777–784 (2005) ArticleCAS Google Scholar
De Ferrari, G. V. & Inestrosa, N. C. Wnt signaling function in Alzheimer’s disease. Brain Res. Rev.33, 1–12 (2000) ArticleCAS Google Scholar
Miller, J. R. & Moon, R. T. Signal transduction through β-catenin and specification of cell fate during embryogenesis. Genes Dev.10, 2527–2539 (1996) ArticleCAS Google Scholar
Jia, J. et al. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature416, 548–552 (2002) ArticleADSCAS Google Scholar
Miller, J. R. The Wnts. Genome Biol3, 3001 (2002) Google Scholar
Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev.10, 1443–1454 (1996) ArticleCAS Google Scholar
van Noort, M., Meeldijk, J., van der Zee, R., Destree, O. & Clevers, H. Wnt signaling controls the phosphorylation status of β-catenin. J. Biol. Chem.277, 17901–17905 (2002) ArticleCAS Google Scholar
Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev.14, 2501–2514 (2000) ArticleADSCAS Google Scholar
Nikolakaki, E., Coffer, P. J., Hemelsoet, R., Woodgett, J. R. & Defize, L. H. Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene8, 833–840 (1993) CASPubMed Google Scholar
Trowbridge, J. J., Xenocostas, A., Moon, R. T. & Bhatia, M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nature Med.12, 89–98 (2006) ArticleCAS Google Scholar
Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Med.10, 55–63 (2004) ArticleCAS Google Scholar
Ayton, P. M. & Cleary, M. L. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene20, 5695–5707 (2001) ArticleCAS Google Scholar
Hess, J. L. MLL: a histone methyltransferase disrupted in leukemia. Trends Mol. Med.10, 500–507 (2004) ArticleCAS Google Scholar
Lavau, C., Szilvassy, S. J., Slany, R. & Cleary, M. L. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J.16, 4226–4237 (1997) ArticleCAS Google Scholar
Somervaille, T. C. & Cleary, M. L. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell10, 257–268 (2006) ArticleCAS Google Scholar
Watase, K. et al. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med.4, e182 (2007) Article Google Scholar
Polakis, P. The oncogenic activation of beta-catenin. Curr. Opin. Genet. Dev.9, 15–21 (1999) ArticleCAS Google Scholar
Testa, J. R. & Tsichlis, P. N. AKT signaling in normal and malignant cells. Oncogene24, 7391–7393 (2005) ArticleCAS Google Scholar
Nickeleit, I., Zender, S., Kossatz, U. & Malek, N. P. p27kip1: a target for tumor therapies? Cell Div.2, 13 (2007) Article Google Scholar
Milne, T. A. et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc. Natl Acad. Sci. USA102, 749–754 (2005) ArticleADSCAS Google Scholar
Yokoyama, A. et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell123, 207–218 (2005) ArticleCAS Google Scholar
Hughes, C. M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the Hoxc8 locus. Mol. Cell13, 587–597 (2004) ArticleCAS Google Scholar
Xia, Z. B. et al. The MLL fusion gene, MLL_–_AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression. Proc. Natl Acad. Sci. USA102, 14028–14033 (2005) ArticleADSCAS Google Scholar
Surjit, M. & Lal, S. K. Glycogen synthase kinase-3 phosphorylates and regulates the stability of p27kip1 protein. Cell Cycle6, 580–588 (2007) ArticleCAS Google Scholar
G.-Amlak, M. et al. Regulation of myeloma cell growth through Akt/Gsk3/forkhead signaling pathway. Biochem. Biophys. Res. Commun.297, 760–764 (2002) ArticleCAS Google Scholar
Dimartino, J. F. & Cleary, M. L. Mll rearrangements in haematological malignancies: lessons from clinical and biological studies. Br. J. Haematol.106, 614–626 (1999) ArticleCAS Google Scholar
Chen, C. S. et al. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood81, 2386–2393 (1993) CASPubMed Google Scholar
Gould, T. D. & Manji, H. K. The Wnt signaling pathway in bipolar disorder. Neuroscientist8, 497–511 (2002) ArticleCAS Google Scholar
Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature441, 475–482 (2006) ArticleADSCAS Google Scholar
Smith, K. S., Rhee, J. W. & Cleary, M. L. Transformation of bone marrow B-cell progenitors by E2A-HlF requires coexpression of BCL-2. Mol. Cell. Biol.22, 7678–7687 (2002) ArticleCAS Google Scholar
So, C. W. et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell3, 161–171 (2003) ArticleCAS Google Scholar
Smith, K. S., Jacobs, Y., Chang, C. P. & Cleary, M. L. Chimeric oncoprotein E2a-Pbx1 induces apoptosis of hematopoietic cells by a p53-independent mechanism that is suppressed by Bcl-2. Oncogene14, 2917–2926 (1997) ArticleCAS Google Scholar
Kasper, L. H. et al. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol. Cell. Biol.19, 764–776 (1999) ArticleCAS Google Scholar
Kohn, A. D. et al. Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J. Biol. Chem.273, 11937–11943 (1998) ArticleCAS Google Scholar
So, C. W. & Cleary, M. L. MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol. Cell. Biol.22, 6542–6552 (2002) ArticleCAS Google Scholar
Ventura, A. et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc. Natl Acad. Sci. USA101, 10380–10385 (2004) ArticleADSCAS Google Scholar