Structure of a complex of the ATPase SecA and the protein-translocation channel (original) (raw)

References

  1. Rapoport, T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663–669 (2007)
    Article CAS ADS PubMed Google Scholar
  2. Neumann-Haefelin, C., Schafer, U., Muller, M. & Koch, H. G. SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J. 19, 6419–6426 (2000)
    Article CAS PubMed PubMed Central Google Scholar
  3. Qi, H. Y. & Bernstein, H. D. SecA is required for the insertion of inner membrane proteins targeted by the Escherichia coli signal recognition particle. J. Biol. Chem. 274, 8993–8997 (1999)
    Article CAS PubMed Google Scholar
  4. Duong, F. & Wickner, W. Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function. EMBO J. 17, 696–705 (1998)
    Article CAS PubMed PubMed Central Google Scholar
  5. van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004)
    Article CAS PubMed Google Scholar
  6. Osborne, A. R. & Rapoport, T. A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97–110 (2007)
    Article CAS PubMed Google Scholar
  7. Duong, F. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22, 4375–4384 (2003)
    Article CAS PubMed PubMed Central Google Scholar
  8. Harris, C. R. & Silhavy, T. J. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438–3444 (1999)
    CAS PubMed PubMed Central Google Scholar
  9. Tam, P. C., Maillard, A. P., Chan, K. K. & Duong, F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24, 3380–3388 (2005)
    Article CAS PubMed PubMed Central Google Scholar
  10. Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J. & Rapoport, T. A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998)
    Article CAS PubMed Google Scholar
  11. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. M. & Wickner, W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor proteintranslocation. Cell 62, 649–657 (1990)
    Article CAS PubMed Google Scholar
  12. Akimaru, J., Matsuyama, S. I., Tokuda, H. & Mizushima, S. Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli . Proc. Natl Acad. Sci. USA 88, 6545–6549 (1991)
    Article CAS ADS PubMed PubMed Central Google Scholar
  13. Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843 (1994)
    Article CAS PubMed Google Scholar
  14. Hunt, J. F. et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018–2026 (2002)
    Article CAS ADS PubMed Google Scholar
  15. Or, E., Navon, A. & Rapoport, T. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J. 21, 4470–4479 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  16. Or, E., Boyd, D., Gon, S., Beckwith, J. & Rapoport, T. The bacterial ATPase SecA functions as a monomer in protein translocation. J. Biol. Chem. 280, 9097–9105 (2005)
    Article CAS PubMed Google Scholar
  17. Alami, M., Dalal, K., Lelj-Garolla, B., Sligar, S. G. & Duong, F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J. 26, 1995–2004 (2007)
    Article CAS PubMed PubMed Central Google Scholar
  18. Jilaveanu, L. B., Zito, C. R. & Oliver, D. Dimeric SecA is essential for protein translocation. Proc. Natl Acad. Sci. USA 102, 7511–7516 (2005)
    Article CAS ADS PubMed PubMed Central Google Scholar
  19. de Keyzer, J. et al. Covalently dimerized SecA is functional in protein translocation. J. Biol. Chem. 280, 35255–35260 (2005)
    Article CAS PubMed Google Scholar
  20. Mitra, K., Frank, J. & Driessen, A. Co- and post-translational translocation through the protein-conducting channel: analogous mechanisms at work? Nature Struct. Mol. Biol. 13, 957–964 (2006)
    Article CAS Google Scholar
  21. Osborne, A. R., Clemons, W. M. & Rapoport, T. A. A large conformational change of the translocation ATPase SecA. Proc. Natl Acad. Sci. USA 101, 10937–10942 (2004)
    Article CAS ADS PubMed PubMed Central Google Scholar
  22. Zimmer, J., Li, W. & Rapoport, T. A. A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA. J. Mol. Biol. 364, 259–265 (2006)
    Article CAS PubMed Google Scholar
  23. Shiba, K., Ito, K., Yura, T. & Cerretti, D. P. A defined mutation in the protein export gene within the spc ribosomal protein operon of Escherichia coli: isolation and characterization of a new temperature-sensitive secY mutant. EMBO J. 3, 631–635 (1984)
    Article CAS PubMed PubMed Central Google Scholar
  24. Mori, H. & Ito, K. An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY. Proc. Natl Acad. Sci. USA 98, 5128–5133 (2001)
    Article CAS ADS PubMed PubMed Central Google Scholar
  25. Chiba, K., Mori, H. & Ito, K. Roles of the C-terminal end of SecY in protein translocation and viability of Escherichia coli . J. Bacteriol. 184, 2243–2250 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  26. Mori, H., Shimizu, Y. & Ito, K. Superactive SecY variants that fulfill the essential translocation function with a reduced cellular quantity. J. Biol. Chem. 277, 48550–48557 (2002)
    Article CAS PubMed Google Scholar
  27. de Vrije, T., de Swart, R., Dowhan, W., Tommassen, J. & de Kruijff, B. Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature 334, 173–175 (1988)
    Article CAS ADS PubMed Google Scholar
  28. Lill, R., Dowhan, W. & Wickner, W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60, 271–280 (1990)
    Article CAS PubMed Google Scholar
  29. Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999)
    Article CAS PubMed Google Scholar
  30. Nishiyama, K., Suzuki, T. & Tokuda, H. Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85, 71–81 (1996)
    Article CAS PubMed Google Scholar
  31. Satoh, Y., Matsumoto, G., Mori, H. & Ito, K. Nearest neighbor analysis of the SecYEG complex. 1. Identification of a SecY–SecG interface. Biochemistry 42, 7434–7441 (2003)
    Article CAS PubMed Google Scholar
  32. Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662–665 (2002)
    Article CAS ADS PubMed Google Scholar
  33. Bostina, M., Mohsin, B., Kuhlbrandt, W. & Collinson, I. Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. J. Mol. Biol. 352, 1035–1043 (2005)
    Article CAS PubMed Google Scholar
  34. Cooper, D. B., Smith, V. F., Crane, J. M., Roth, H. C., Lilly, A. A. & Randall, L. L. SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. J. Mol. Biol. 382, 74–87 (2008)
    Article CAS PubMed PubMed Central Google Scholar
  35. Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P. & Wickner, W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 63, 269–279 (1990)
    Article CAS PubMed Google Scholar
  36. Gelis, I. et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131, 756–769 (2007)
    Article CAS PubMed PubMed Central Google Scholar
  37. Prinz, W. A., Spiess, C., Ehrmann, M., Schierle, C. & Beckwith, J. Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase. EMBO J. 15, 5209–5217 (1996)
    Article CAS PubMed PubMed Central Google Scholar
  38. Zhou, J. & Xu, Z. Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nature Struct. Biol. 10, 942–947 (2003)
    Article CAS PubMed Google Scholar
  39. Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000)
    Article CAS PubMed Google Scholar
  40. Erlandson, K. J. et al. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature doi: 10.1038/nature07439 (this issue)
  41. Jarosik, G. P. & Oliver, D. B. Isolation and analysis of dominant SecA mutations in Escherichia coli . J. Bacteriol. 173, 860–868 (1991)
    Article CAS PubMed PubMed Central Google Scholar
  42. Karamanou, S. et al. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol. Microbiol. 34, 1133–1145 (1999)
    Article CAS PubMed Google Scholar
  43. Wang, J. et al. Crystal structures of the HslVU peptidase–ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177–184 (2001)
    Article CAS PubMed Google Scholar
  44. Siddiqui, S. M., Sauer, R. T. & Baker, T. A. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev. 18, 369–374 (2004)
    Article CAS PubMed PubMed Central Google Scholar
  45. Hinnerwisch, J., Fenton, W. A., Furtak, K. J., Farr, G. W. & Horwich, A. L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–1041 (2005)
    Article CAS PubMed Google Scholar
  46. DeLaBarre, B., Christianson, J. C., Kopito, R. R. & Brunger, A. T. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell 22, 451–462 (2006)
    Article CAS PubMed Google Scholar
  47. Martin, A., Baker, T. A. & Sauer, R. T. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Mol. Cell 29, 441–450 (2008)
    Article CAS PubMed PubMed Central Google Scholar
  48. Mori, H. & Ito, K. The long α-helix of SecA is important for the ATPase coupling of translocation. J. Biol. Chem. 281, 36249–36256 (2006)
    Article CAS PubMed Google Scholar
  49. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)
    CAS PubMed Google Scholar
  50. Storoni, L. C., McCoy, A. J. & Read, R. J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D 60, 432–438 (2004)
    Article PubMed Google Scholar
  51. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D 61, 458–464 (2005)
    Article PubMed Google Scholar
  52. Brunger, A. T. Version 1.2 of the Crystallography and NMR system. Nature Protoc. 2, 2728–2733 (2007)
    Article CAS Google Scholar
  53. Collaborative Computational Project, 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
  54. Cowtan, K. D. & Main, P. Phase combination and cross validation in iterated density-modification calculations. Acta Crystallogr. D 52, 43–48 (1996)
    Article CAS PubMed Google Scholar
  55. Cowtan, K. D. & Zhang, K. Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999)
    Article CAS PubMed Google Scholar
  56. Terwilliger, T. & Berendzen, J. Automated MAD and MIR structure determination. Acta Crystallogr. D 55, 849–861 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  57. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article PubMed Google Scholar
  58. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986)
    Article Google Scholar
  59. DeLaBarre, B. & Brunger, A. T. Considerations for the refinement of low-resolution crystal structures. Acta Crystallogr. D 62, 923–932 (2006)
    Article PubMed Google Scholar
  60. Chen, B. et al. Determining the structure of an unliganded and fully glycosylated SIV gp120 envelope glycoprotein. Structure 13, 197–211 (2005)
    Article CAS PubMed Google Scholar
  61. DeLano, W. L. The PyMOL Molecular Graphics System. <http://www.pymol.org> (2002)
  62. Glaser, F. et al. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163–164 (2003)
    Article CAS PubMed Google Scholar
  63. Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–302 (2005)
    Article CAS ADS PubMed PubMed Central Google Scholar

Download references