Iida, S. & Terada, R. Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol. Biol.59, 205–219 (2005) ArticleCASPubMed Google Scholar
Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA93, 1156–1160 (1996) ArticleADSCASPubMedPubMed Central Google Scholar
Puchta, H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot.56, 1–14 (2005) ArticleCASPubMed Google Scholar
Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet.12, 224–228 (1996) ArticleCASPubMed Google Scholar
Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol.21, 289–297 (2001) ArticleCASPubMedPubMed Central Google Scholar
Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science300, 763 (2003) ArticlePubMed Google Scholar
Wright, D. A. et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J.44, 693–705 (2005) ArticleCASPubMed Google Scholar
Cai, C. Q. et al. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol. Biol.69, 699–709 (2008) ArticlePubMed Google Scholar
Miller, J., McLachlan, A. D. & Klug, A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J.4, 1609–1614 (1985) ArticleCASPubMedPubMed Central Google Scholar
Pavletich, N. P. & Pabo, C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science252, 809–817 (1991) ArticleADSCASPubMed Google Scholar
Isalan, M. & Choo, Y. Rapid, high-throughput engineering of sequence-specific zinc finger DNA-binding proteins. Methods Enzymol.340, 593–609 (2001) ArticleCASPubMed Google Scholar
Pabo, C. O., Peisach, E. & Grant, R. A. Design and selection of novel Cys2his2 zinc finger proteins. Annu. Rev. Biochem.70, 313–340 (2001) ArticleCASPubMed Google Scholar
Sun, Y. et al. Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: molecular and biochemical characterization. Plant Physiol.144, 1278–1291 (2007) ArticleCASPubMedPubMed Central Google Scholar
Raboy, V. Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci.6, 458–462 (2001) ArticleCASPubMed Google Scholar
Stevenson-Paulik, J. et al. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc. Natl Acad. Sci. USA102, 12612–12617 (2005) ArticleADSCASPubMedPubMed Central Google Scholar
Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature435, 646–651 (2005) ArticleADSCASPubMed Google Scholar
Frame, B. R. et al. _Agrobacterium tumefaciens_-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol.129, 13–22 (2002) ArticleCASPubMedPubMed Central Google Scholar
Doyon, Y. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnol.26, 702–708 (2008) ArticleCAS Google Scholar
Bibikova, M. et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics161, 1169–1175 (2002) CASPubMedPubMed Central Google Scholar
Porteus, M. H. Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther.13, 438–446 (2006) ArticleCASPubMed Google Scholar
Moehle, E. A. et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl Acad. Sci. USA104, 3055–3060 (2007) ArticleADSCASPubMedPubMed Central Google Scholar
Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotechnol.25, 1298–1306 (2007) ArticleCAS Google Scholar
Perez, E. E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnol.26, 808–816 (2008) ArticleCAS Google Scholar
Wei, F. et al. Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet.3, e123 (2007) ArticlePubMedPubMed Central Google Scholar
Maeder, M. L. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell31, 294–301 (2008) ArticleCASPubMedPubMed Central Google Scholar
Isalan, M., Klug, A. & Choo, Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nature Biotechnol.19, 656–660 (2001) ArticleCAS Google Scholar
Doyon, Y. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnol.26, 702–708 (2008) ArticleCAS Google Scholar
Fang, J. et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nature Biotechnol.23, 584–590 (2005) ArticleCAS Google Scholar
Miller, J. C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnol.25, 778–785 (2007) ArticleCAS Google Scholar
Christensen, A. H., Sharrock, R. A. & Quail, P. H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol.18, 675–689 (1992) ArticleCASPubMed Google Scholar
McElroy, D., Zhang, W., Cao, J. & Wu, R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell2, 163–171 (1990) ArticleCASPubMedPubMed Central Google Scholar
Wohlleben, W. et al. Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum . Gene70, 25–37 (1988) ArticleCASPubMed Google Scholar
Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: a Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, 1989) Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 - ΔΔ C t method. Methods25, 402–408 (2001) ArticleCASPubMed Google Scholar
Armstrong, C., Green, C. & Phillips, R. Development and availability of germplasm with high type II culture formation response. Maize Genet. Coop. News Lett.65, 92–93 (1991) Google Scholar
Petolino, J. F., Hopkins, N. L., Kosegi, B. D. & Skokut, M. Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Rep.19, 781–786 (2000) ArticleCASPubMed Google Scholar
Skoglund, E., Carlsson, N.-G. & Sandberg, A.-S. Determination of isomers of inositol mono- to hexaphosphates in selected foods and intestinal contents using high-performance ion chromatography. J. Agric. Food Chem.45, 431–436 (1997) ArticleCAS Google Scholar
Stevenson-Paulik, J. et al. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc. Natl Acad. Sci. USA102, 12612–12617 (2005) ArticleADSCASPubMedPubMed Central Google Scholar
Buscher, B. A. P., van der Hoeven, R. A. M., Tjaden, U. R., Andersson, E. & Van der Greef, J. Analysis of inositol phosphates and derivatives using capillary zone electrophoresis-mass spectrometry. J. Chromatogr. A712, 235–243 (1995) ArticleCAS Google Scholar
Hsu, F.-F., Turk, J. & Gross, M. L. Structural distinction among inositol phosphate isomers using high-energy and low-energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J. Mass Spectrom.38, 447–457 (2003) ArticleADSCASPubMed Google Scholar