Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase (original) (raw)
References
Jankowsky, E., Gross, C., Shuman, S. & Pyle, A. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science291, 121–125 (2001) ArticleADSCAS Google Scholar
Marquis, K. A. et al. SpoIIIE strips proteins off the DNA during chromosome translocation. Genes Dev.22, 1786–1795 (2008) ArticleCAS Google Scholar
Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature423, 305–309 (2003) ArticleADSCAS Google Scholar
Guy, C. P. et al. Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol. Cell36, 654–666 (2009) ArticleCAS Google Scholar
Singleton, M. R., Dillingham, M., Gaudier, M., Kowalczykowski, S. & Wigley, D. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature432, 187–193 (2004) ArticleADSCAS Google Scholar
Bianco, P. R. et al. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature409, 374–378 (2001) ArticleADSCAS Google Scholar
Spies, M., Amitani, I., Baskin, R. & Kowalczykowski, S. RecBCD enzyme switches lead motor subunits in response to chi recognition. Cell131, 694–705 (2007) ArticleCAS Google Scholar
Taylor, A. F. & Smith, G. R. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature423, 889–893 (2003) ArticleADSCAS Google Scholar
Visnapuu, M.-L. & Greene, E. Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition. Nature Struct. Mol. Biol.16, 1056–1062 (2009) ArticleCAS Google Scholar
Ishihama, A. Functional modulation of Escherichia coli RNA polymerase. Annu. Rev. Microbiol.54, 499–518 (2000) ArticleCAS Google Scholar
Herbert, K. M., Greenleaf, W. J. & Block, S. M. Single-molecule studies of RNA polymerase: motoring along. Annu. Rev. Biochem.77, 149–176 (2008) ArticleCAS Google Scholar
Liu, B., Wong, M. & Alberts, B. A transcribing RNA polymerase molecule survives DNA replication without aborting its growing RNA chain. Proc. Natl Acad. Sci. USA91, 10660–10664 (1994) ArticleADSCAS Google Scholar
Liu, B., Wong, M., Tinker, R., Geiduschek, E. & Alberts, B. The DNA replication fork can pass RNA polymerase without displacing the nascent transcript. Nature366, 33–39 (1993) ArticleADSCAS Google Scholar
Liu, B. & Alberts, B. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science267, 1131–1137 (1995) ArticleADSCAS Google Scholar
Pomerantz, R. T. & O’Donnell, M. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature456, 762–766 (2008) ArticleADSCAS Google Scholar
Pomerantz, R. T. & O’Donnell, M. Direct restart of a replication fork stalled by a head-on RNA polymerase. Science327, 590–592 (2010) ArticleADSCAS Google Scholar
Wright, D. J., King, K. & Modrich, P. The negative charge of Glu-111 is required to activate the cleavage center of EcoRI endonuclease. J. Biol. Chem.264, 11816–11821 (1989) CAS Google Scholar
Epshtein, V. & Toulm, È. F. Rahmouni, A. Borukhov, S. & Nudler, E. Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J.22, 4719–4727 (2003) ArticleCAS Google Scholar
Nudler, E., Kashlev, M., Nikiforov, V. & Goldfarb, A. Coupling between transcription termination and RNA polymerase inchworming. Cell81, 351–357 (1995) ArticleCAS Google Scholar
Pavco, P. A. & Steege, D. A. Characterization of elongating T7 and SP6 RNA polymerases and their response to a roadblock generated by a site-specific DNA binding protein. Nucleic Acids Res.19, 4639–4646 (1991) ArticleCAS Google Scholar
Byrd, A. K. & Raney, K. D. Displacement of a DNA binding protein by Dda helicase. Nucleic Acids Res.34, 3020–3029 (2006) ArticleCAS Google Scholar
Noom, M. C., van den Broek, B., van Mameren, J. & Wuite, G. J. L. Visualizing single DNA-bound proteins using DNA as a scanning probe. Nature Methods4, 1031–1036 (2007) ArticleCAS Google Scholar
Sadler, J. R., Sasmor, H. & Betz, J. L. A perfectly symmetric lac operator binds the lac repressor very tightly. Proc. Natl Acad. Sci. USA80, 6785–6789 (1983) ArticleADSCAS Google Scholar
Lin, S.-Y. & Riggs, A. D. Lac repressor binding to DNA not containing the lac operator and to synthetic poly dAT. Nature228, 1184–1186 (1970) ArticleADSCAS Google Scholar
Elf, J., Li, G.-W. & Xie, X. Probing transcription factor dynamics at the single-molecule level in a living cell. Science316, 1191–1194 (2007) ArticleADSCAS Google Scholar
Wang, Y. M., Austin, R. H. & Cox, E. C. Single molecule measurements of repressor protein 1D diffusion on DNA. Phys. Rev. Lett.97, 048302 (2006) ArticleADSCAS Google Scholar
Studitsky, V. M., Clark, D. J. & Felsenfeld, G. Overcoming a nucleosomal barrier to transcription. Cell83, 19–27 (1995) ArticleCAS Google Scholar
Bonne-Andrea, C., Wong, M. & Alberts, B. In vitro replication through nucleosomes without histone displacement. Nature343, 719–726 (1990) ArticleADSCAS Google Scholar
Eggleston, A. K., O’Neill, T. E., Bradbury, E. M. & Kowalczykowski, S. C. Unwinding of nucleosomal DNA by a DNA helicase. J. Biol. Chem.270, 2024–2031 (1995) ArticleCAS Google Scholar
Mollazadeh-Beidokhti, L., Deseigne, J., Lacoste, D., Mohammad-Rafiee, F. & Schiessel, H. Stochastic model for nucleosome sliding under an external force. Phys. Rev. E79, 031922 (2009) ArticleADSCAS Google Scholar