CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III (original) (raw)
Aliyari, R. & Ding, S. W. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol. Rev.227, 176–188 (2009) ArticleCAS Google Scholar
Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell136, 642–655 (2009) ArticleCAS Google Scholar
Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet.9, 102–114 (2008) ArticleCAS Google Scholar
Jinek, M. & Doudna, J. A. A three-dimensional view of the molecular machinery of RNA interference. Nature457, 405–412 (2009) ArticleADSCAS Google Scholar
Malone, C. D. & Hannon, G. J. Small RNAs as guardians of the genome. Cell136, 656–668 (2009) ArticleCAS Google Scholar
Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature431, 343–349 (2004) ArticleADSCAS Google Scholar
Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science320, 1047–1050 (2008) ArticleADSCAS Google Scholar
Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science315, 1709–1712 (2007) ArticleADSCAS Google Scholar
Deveau, H., Garneau, J. E. & Moineau, S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol.64, 475–493 (2010) ArticleCAS Google Scholar
Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science327, 167–170 (2010) ArticleADSCAS Google Scholar
Koonin, E. V. & Makarova, K. S. CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol. Rep.1, 95 (2009) PubMedPubMed Central Google Scholar
Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Rev. Genet.11, 181–190 (2010) ArticleCAS Google Scholar
Sorek, R., Kunin, V. & Hugenholtz, P. CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Rev. Microbiol.6, 181–186 (2008) ArticleCAS Google Scholar
van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci.34, 401–407 (2009) ArticleCAS Google Scholar
Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol.60, 174–182 (2005) ArticleADSCAS Google Scholar
Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology151, 2551–2561 (2005) ArticleCAS Google Scholar
Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology151, 653–663 (2005) ArticleCAS Google Scholar
van der Oost, J. & Brouns, S. J. RNAi: prokaryotes get in on the act. Cell139, 863–865 (2009) ArticleCAS Google Scholar
Jansen, R., Embden, J. D., Gaastra, W. & Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol.43, 1565–1575 (2002) ArticleCAS Google Scholar
Mojica, F. J., Ferrer, C., Juez, G. & Rodriguez-Valera, F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol.17, 85–93 (1995) ArticleCAS Google Scholar
Nakata, A., Amemura, M. & Makino, K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol.171, 3553–3556 (1989) ArticleCAS Google Scholar
Waters, L. S. & Storz, G. Regulatory RNAs in bacteria. Cell136, 615–628 (2009) ArticleCAS Google Scholar
Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B. & Koonin, E. V. A. DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res.30, 482–496 (2002) ArticleCAS Google Scholar
Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature468, 67–71 (2010) ArticleADSCAS Google Scholar
Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science322, 1843–1845 (2008) ArticleADSCAS Google Scholar
Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell139, 945–956 (2009) ArticleCAS Google Scholar
Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature463, 568–571 (2010) ArticleADSCAS Google Scholar
Carte, J., Wang, R., Li, H., Terns, R. M. & Terns, M. P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev.22, 3489–3496 (2008) ArticleCAS Google Scholar
Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science321, 960–964 (2008) ArticleADSCAS Google Scholar
Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science329, 1355–1358 (2010) ArticleADSCAS Google Scholar
Carte, J., Pfister, N. T., Compton, M. M., Terns, R. M. & Terns, M. P. Binding and cleavage of CRISPR RNA by Cas6. RNA16, 2181–2188 (2010) ArticleCAS Google Scholar
Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput. Biol.1, e60 (2005) ArticleADS Google Scholar
Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct1, 7 (2006) Article Google Scholar
Vojtek, I. et al. Lysogenic transfer of group A Streptococcus superantigen gene among streptococci. J. Infect. Dis.197, 225–234 (2008) ArticleCAS Google Scholar
Fischetti, V. A. In vivo acquisition of prophage in Streptococcus pyogenes. Trends Microbiol.15, 297–300 (2007) ArticleCAS Google Scholar
Brussow, H., Canchaya, C. & Hardt, W. D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev.68, 560–602 (2004) Article Google Scholar
Banks, D. J., Beres, S. B. & Musser, J. M. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol.10, 515–521 (2002) ArticleCAS Google Scholar
Aziz, R. K. et al. Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes. J. Bacteriol.187, 3311–3318 (2005) ArticleCAS Google Scholar
Sharma, C. M. et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature464, 250–255 (2010) ArticleADSCAS Google Scholar
Drider, D. & Condon, C. The continuing story of endoribonuclease III. J. Mol. Microbiol. Biotechnol.8, 195–200 (2004) Article Google Scholar
Huntzinger, E. et al. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J.24, 824–835 (2005) ArticleCAS Google Scholar
Nicholson, A. W. Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol. Rev.23, 371–390 (1999) ArticleCAS Google Scholar
Vogel, J., Argaman, L., Wagner, E. G. & Altuvia, S. The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr. Biol.14, 2271–2276 (2004) ArticleCAS Google Scholar
Opdyke, J. A., Fozo, E. M., Hemm, M. R. & Storz, G. RNase III participates in GadY-dependent cleavage of the _gadX_-gadW mRNA. J. Mol. Biol.406, 29–43 (2010) Article Google Scholar
Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing. Nature Struct. Mol. Biol.11, 214–218 (2004) ArticleCAS Google Scholar
Condon, C. Maturation and degradation of RNA in bacteria. Curr. Opin. Microbiol.10, 271–278 (2007) ArticleCAS Google Scholar
Kunin, V., Sorek, R. & Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol.8, R61 (2007) Article Google Scholar
Mangold, M. et al. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol. Microbiol.53, 1515–1527 (2004) ArticleCAS Google Scholar
Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol.190, 1390–1400 (2008) ArticleCAS Google Scholar
Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: a Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, 1989) Google Scholar
Caparon, M. G. & Scott, J. R. Genetic manipulation of pathogenic streptococci. Methods Enzymol.204, 556–586 (1991) ArticleCAS Google Scholar
Charpentier, E. et al. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl. Environ. Microbiol.70, 6076–6085 (2004) ArticleCAS Google Scholar
Arnaud, M., Chastanet, A. & Debarbouille, M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl. Environ. Microbiol.70, 6887–6891 (2004) ArticleCAS Google Scholar
Siller, M. et al. Functional analysis of the group A streptococcal luxS/AI-2 system in metabolism, adaptation to stress and interaction with host cells. BMC Microbiol.8, 188 (2008) Article Google Scholar
Urban, J. H. & Vogel, J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res.35, 1018–1037 (2007) ArticleCAS Google Scholar
Sittka, A. et al. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet.4, e1000163 (2008) Article Google Scholar
Herbert, S., Barry, P. & Novick, R. P. Subinhibitory clindamycin differentially inhibits transcription of exoprotein genes in Staphylococcus aureus. Infect. Immun.69, 2996–3003 (2001) ArticleCAS Google Scholar
Pall, G. S. & Hamilton, A. J. Improved northern blot method for enhanced detection of small RNA. Nature Protocols3, 1077–1084 (2008) ArticleCAS Google Scholar
Roberts, C. et al. Characterizing the effect of the Staphylococcus aureus virulence factor regulator, SarA, on log-phase mRNA half-lives. J. Bacteriol.188, 2593–2603 (2006) ArticleCAS Google Scholar
Britton, R. A. et al. Maturation of the 5′ end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Mol. Microbiol.63, 127–138 (2007) ArticleCAS Google Scholar
Sittka, A., Pfeiffer, V., Tedin, K. & Vogel, J. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol. Microbiol.63, 193–217 (2007) ArticleCAS Google Scholar
Papenfort, K. et al. SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol. Microbiol.62, 1674–1688 (2006) ArticleCAS Google Scholar
Kingsford, C. L., Ayanbule, K. & Salzberg, S. L. Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol.8, R22 (2007) Article Google Scholar
Denman, R. B. Using RNAFOLD to predict the activity of small catalytic RNAs. Biotechniques15, 1090–1095 (1993) CASPubMed Google Scholar
Hofacker, I. L. & Stadler, P. F. Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics22, 1172–1176 (2006) ArticleCAS Google Scholar
Darty, K., Denise, A. & Ponty, Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics25, 1974–1975 (2009) ArticleCAS Google Scholar