Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? (original) (raw)
Bushati, N. & Cohen, S. M. microRNA functions. Annu. Rev. Cell Dev. Biol.23, 175–205 (2007). ArticleCASPubMed Google Scholar
Kloosterman, W. P. & Plasterk, R. H. The diverse functions of microRNAs in animal development and disease. Dev. Cell11, 441–450 (2006). ArticleCASPubMed Google Scholar
Rana, T. M. Illuminating the silence: understanding the structure and function of small RNAs. Nature Rev. Mol. Cell Biol.8, 23–36 (2007). ArticleCAS Google Scholar
Molnar, A., Schwach, F., Studholme, D. J., Thuenemann, E. C. & Baulcombe, D. C. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature447, 1126–1129 (2007). ArticleCASPubMed Google Scholar
Zhao, T. et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev.21, 1190–1203 (2007). ArticleCASPubMedPubMed Central Google Scholar
Esquela-Kerscher, A. & Slack, F. J. Oncomirs — microRNAs with a role in cancer. Nature Rev. Cancer6, 259–269 (2006). ArticleCAS Google Scholar
Chang, T. C. & Mendell, J. T. microRNAs in vertebrate physiology and human disease. Annu. Rev. Genomics Hum. Genet.8, 215–239 (2007). ArticleCASPubMed Google Scholar
Krutzfeldt, J. & Stoffel, M. microRNAs: a new class of regulatory genes affecting metabolism. Cell Metab.4, 9–12 (2006). ArticleCASPubMed Google Scholar
Bao, N., Lye, K. W. & Barton, M. K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell7, 653–662 (2004). ArticleCASPubMed Google Scholar
Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev.20, 515–524 (2006). ArticleCASPubMed Google Scholar
Pillai, R. S., Bhattacharyya, S. N. & Filipowicz, W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol.17, 118–126 (2007). ArticleCASPubMed Google Scholar
Standart, N. & Jackson, R. J. MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev.21, 1975–1982 (2007). ArticleCASPubMed Google Scholar
Jackson, R. J. & Standart, N. How do microRNAs regulate gene expression? Sci. STKE2007, re1 (2007). ArticlePubMed Google Scholar
Nilsen, T. W. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet.23, 243–249 (2007). ArticleCASPubMed Google Scholar
Hwang, H. W., Wentzel, E. A. & Mendell, J. T. A hexanucleotide element directs microRNA nuclear import. Science315, 97–100 (2007). ArticleCASPubMed Google Scholar
Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol.9, 654–659 (2007). ArticleCASPubMed Google Scholar
Eulalio, A., Behm-Ansmant, I. & Izaurralde, E. P-bodies: at the crossroads of post-transcriptional pathways. Nature Rev. Mol. Cell Biol.8, 9–22 (2007). ArticleCAS Google Scholar
Leung, A. K. & Sharp, P. A. Function and localization of microRNAs in mammalian cells. Cold Spring Harb. Symp. Quant. Biol.71, 29–38 (2006). ArticleCASPubMed Google Scholar
Sontheimer, E. J. Assembly and function of RNA silencing complexes. Nature Rev. Mol. Cell Biol.6, 127–138 (2005). ArticleCAS Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism and function. Cell116, 281–297 (2004). ArticleCASPubMed Google Scholar
Du, T. & Zamore, P. D. microPrimer: the biogenesis and function of microRNA. Development132, 4645–4652 (2005). ArticleCASPubMed Google Scholar
Filipowicz, W., Jaskiewicz, L., Kolb, F. A. & Pillai, R. S. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr. Opin. Struct. Biol.15, 331–341 (2005). ArticleCASPubMed Google Scholar
Peters, L. & Meister, G. Argonaute proteins: mediators of RNA silencing. Mol. Cell26, 611–623 (2007). ArticleCASPubMed Google Scholar
Tolia, N. H. & Joshua-Tor, L. Slicer and the argonautes. Nature Chem. Biol.3, 36–43 (2007). ArticleCAS Google Scholar
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441 (2004). ArticleCASPubMed Google Scholar
Pillai, R. S., Artus, C. G. & Filipowicz, W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA10, 1518–1525 (2004). ArticleCASPubMedPubMed Central Google Scholar
Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell15, 185–197 (2004). ArticleCASPubMed Google Scholar
Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol.57, 19–53 (2006). ArticleCASPubMed Google Scholar
Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol.3, 404–418 (2005). ArticleCAS Google Scholar
Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). ArticleCASPubMed Google Scholar
Lytle, J. R., Yario, T. A. & Steitz, J. A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl Acad. Sci. USA104, 9667–6972 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kloosterman, W. P., Wienholds, E., Ketting, R. F. & Plasterk, R. H. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res.32, 6284–6291 (2004). ArticleCASPubMedPubMed Central Google Scholar
Merrick, W. C. Cap-dependent and cap-independent translation in eukaryotic systems. Gene332, 1–11 (2004). ArticleCASPubMed Google Scholar
Kapp, L. D. & Lorsch, J. R. The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem.73, 657–704 (2004). ArticleCASPubMed Google Scholar
Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell2, 135–140 (1998). ArticleCASPubMed Google Scholar
Derry, M. C., Yanagiya, A., Martineau, Y. & Sonenberg, N. Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb. Symp. Quant. Biol.71, 537–543 (2006). ArticleCASPubMed Google Scholar
Jackson, R. J. Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem. Soc. Trans.33, 1231–1241 (2005). ArticleCASPubMed Google Scholar
Pillai, R. S. et al. Inhibition of translational initiation by let-7 microRNA in human cells. Science309, 1573–1576 (2005). ArticleCASPubMed Google Scholar
Humphreys, D. T., Westman, B. J., Martin, D. I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl Acad. Sci. USA102, 16961–16966 (2005). This paper and reference 43 provide the first evidence that miRNAs repress translational initiation, probably by interfering with the function of the cap-binding factor eIF4E. ArticleCASPubMedPubMed Central Google Scholar
Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell125, 1111–1124 (2006). ArticleCASPubMed Google Scholar
Chekulaeva, M., Hentze, M. W. & Ephrussi, A. Bruno acts as a dual repressor of oskar translation, promoting mRNA oligomerization and formation of silencing particles. Cell124, 521–533 (2006). ArticleCASPubMed Google Scholar
Richter, J. D. & Sonenberg, N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature433, 477–480 (2005). ArticleCASPubMed Google Scholar
Cho, P. F. et al. A new paradigm for translational control: inhibition via 5′–3′ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell121, 411–423 (2005). ArticleCASPubMed Google Scholar
Kiriakidou, M. et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell129, 1141–1151 (2007). This paper reports that human AGO2 has the potential to directly interact with the m7G cap and to repress translational initiation by competing with eIF4E for cap binding. ArticleCASPubMed Google Scholar
Marcotrigiano, J., Gingras, A. C., Sonenberg, N. & Burley, S. K. Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell89, 951–961 (1997). ArticleCASPubMed Google Scholar
Wang, B., Love, T. M., Call, M. E., Doench, J. G. & Novina, C. D. Recapitulation of short RNA-directed translational gene silencing in vitro. Mol. Cell22, 553–560 (2006). ArticleCASPubMed Google Scholar
Thermann, R. & Hentze, M. W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature447, 875–878 (2007). ArticleCASPubMed Google Scholar
Mathonnet, G. et al. microRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science317, 1764–1767 (2007). ArticleCASPubMed Google Scholar
Wakiyama, M., Takimoto, K., Ohara, O. & Yokoyama, S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev.21, 1857–1862 (2007). References 52–55 describe the characterization of cell-free extracts, recapitulating many features of the miRNA-mediated repression established inmammalian andD. melanogastercell lines. ArticleCASPubMedPubMed Central Google Scholar
Chendrimada, T. P. et al. microRNA silencing through RISC recruitment of eIF6. Nature447, 823–828 (2007). This report identifies eIF6 as a potential target of miRNA-meditated repression. The authors propose that, by interacting with eIF6, AGO proteins repress translation by preventing the 60S ribosomal subunit joining to the 40S initiation complex. ArticleCASPubMed Google Scholar
Russell, D. W. & Spremulli, L. L. Identification of a wheat germ ribosome dissociation factor distinct from initiation factor eIF-3. J. Biol. Chem.253, 6647–6649 (1978). CASPubMed Google Scholar
Sanvito, F. et al. The β4 integrin interactor p27(BBP/eIF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly. J. Cell Biol.144, 823–837 (1999). ArticleCASPubMedPubMed Central Google Scholar
Si, K. & Maitra, U. The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor. Mol. Cell Biol.19, 1416–1426 (1999). ArticleCASPubMedPubMed Central Google Scholar
Basu, U., Si, K., Warner, J. R. & Maitra, U. The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol. Cell Biol.21, 1453–1462 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sachs, A. B. & Davis, R. W. Translation initiation and ribosomal biogenesis: involvement of a putative rRNA helicase and RPL46. Science247, 1077–1079 (1990). ArticleCASPubMed Google Scholar
Sachs, A. B. & Davis, R. W. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell58, 857–867 (1989). ArticleCASPubMed Google Scholar
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). ArticleCASPubMed Google Scholar
Seggerson, K., Tang, L. & Moss, E. G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol.243, 215–225 (2002). ArticleCASPubMed Google Scholar
Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell21, 533–542 (2006). ArticleCASPubMed Google Scholar
Nottrott, S., Simard, M. J. & Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature Struct. Mol. Biol.13, 1108–1114 (2006). ArticleCAS Google Scholar
Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nature Struct. Mol. Biol.13, 1102–1107 (2006). References 66 to 68 demonstrate that repressed mRNAs are associated with actively translating polyribosomes and argue that miRNAs block protein synthesis at steps after initiation. The data supporting this mechanism are also reported in references 64 and 65. ArticleCAS Google Scholar
Kim, J. et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl Acad. Sci. USA101, 360–365 (2004). ArticleCASPubMed Google Scholar
Nelson, P. T., Hatzigeorgiou, A. G. & Mourelatos, Z. miRNP: mRNA association in polyribosomes in a human neuronal cell line. RNA10, 387–394 (2004). ArticleCASPubMedPubMed Central Google Scholar
Vasudevan, S. & Steitz, J. A. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell128, 1105–1118 (2007). This paper demonstrates that interaction of AGO2 (in a complex with FXR1) with the mRNA 3′ UTR can, under specific cellular conditions, lead to upregulation rather than downregulation of translation. ArticleCASPubMedPubMed Central Google Scholar
Mootz, D., Ho, D. M. & Hunter, C. P. The STAR–Maxi-KH domain protein GLD-1 mediates a developmental switch in the translational control of C. elegans PAL-1. Development131, 3263–3272 (2004). ArticleCASPubMed Google Scholar
Ruegsegger, U., Leber, J. H. & Walter, P. Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell107, 103–114 (2001). ArticleCASPubMed Google Scholar
Clark, I. E., Wyckoff, D. & Gavis, E. R. Synthesis of the posterior determinant nanos is spatially restricted by a novel cotranslational regulatory mechanism. Curr. Biol.10, 1311–1314 (2000). ArticleCASPubMed Google Scholar
Braat, A. K., Yan, N., Arn, E., Harrison, D. & Macdonald, P. M. Localization-dependent oskar protein accumulation; control after the initiation of translation. Dev. Cell7, 125–131 (2004). ArticleCASPubMed Google Scholar
Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell122, 553–563 (2005). ArticleCASPubMed Google Scholar
Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev.20, 1885–1898 (2006). ArticleCASPubMedPubMed Central Google Scholar
Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science312, 75–79 (2006). This paper and references 56, 77 and 78 provide compelling evidence that miRNA can induce pronounced target mRNA degradation, which is initiated by removal of the poly(A) tail. ArticleCASPubMed Google Scholar
Wu, L. & Belasco, J. G. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol. Cell Biol.25, 9198–9208 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by drosha and Argonaute proteins in Drosophila melanogaster. Mol. Cell Biol.26, 2965–2975 (2006). ArticleCASPubMedPubMed Central Google Scholar
Schmitter, D. et al. Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res.34, 4801–4815 (2006). ArticleCASPubMedPubMed Central Google Scholar
Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev.21, 2558–2570 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433, 769–773 (2005). ArticleCASPubMed Google Scholar
Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature438, 685–689 (2005). ArticlePubMedCAS Google Scholar
Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell. Metab.3, 87–98 (2006). ArticleCASPubMed Google Scholar
Linsley, P. S. et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell Biol.27, 2240–2252 (2007). ArticleCASPubMedPubMed Central Google Scholar
Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nature Struct. Mol. Biol.11, 121–127 (2004). ArticleCAS Google Scholar
Parker, R. & Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell25, 635–646 (2007). ArticleCASPubMed Google Scholar
Ding, L., Spencer, A., Morita, K. & Han, M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol. Cell19, 437–447 (2005). ArticleCASPubMed Google Scholar
Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nature Cell Biol.7, 1261–1266 (2005). ArticleCASPubMed Google Scholar
Jakymiw, A. et al. Disruption of GW bodies impairs mammalian RNA interference. Nature Cell Biol.7, 1267–1274 (2005). ArticleCASPubMed Google Scholar
Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol.15, 2149–2155 (2005). ArticleCASPubMed Google Scholar
Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nature Struct. Mol. Biol.14, 897–903 (2007). ArticleCAS Google Scholar
Mishima, Y. et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr. Biol.16, 2135–2142 (2006). ArticleCASPubMedPubMed Central Google Scholar
Brengues, M., Teixeira, D. & Parker, R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science310, 486–489 (2005). ArticleCASPubMedPubMed Central Google Scholar
Brengues, M. & Parker, R. Accumulation of polyadenylated mRNA, Pab1p, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae. Mol. Biol. Cell18, 2592–2602 (2007). ArticleCASPubMedPubMed Central Google Scholar
Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biol.7, 719–723 (2005). This paper and references 43, 45, 78, 91 and 92 establish the connection between miRNA-mediated repression and P-bodies by demonstrating that miRNP components and repressed mRNAs accumulate in P-bodies and that many P-body proteins are essential for the repression. ArticleCASPubMed Google Scholar
Leung, A. K., Calabrese, J. M. & Sharp, P. A. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl Acad. Sci. USA103, 18125–18130 (2006). ArticleCASPubMedPubMed Central Google Scholar
Huang, J. et al. Derepression of micro-RNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members. J. Biol. Chem.282, 33632–33640 (2007). ArticleCASPubMed Google Scholar
Eulalio, A., Behm-Ansmant, I., Schweizer, D. & Izaurralde, E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol. Cell Biol.27, 3970–3981 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chu, C. Y. & Rana, T. M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol.4, 1122–1136 (2006). This paper and reference 83 identify the decapping activators that are associated with P-bodies as proteins that are essential for miRNA-mediated repression. ArticleCAS Google Scholar
Decker, C. J., Teixeira, D. & Parker, R. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J. Cell Biol.179, 437–449 (2007). ArticleCASPubMedPubMed Central Google Scholar
Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA11, 1640–1647 (2005). ArticleCASPubMedPubMed Central Google Scholar
Barbee, S. A. et al. Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron52, 997–1009 (2006). ArticleCASPubMedPubMed Central Google Scholar
Minshall, N. & Standart, N. The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer. Nucleic Acids Res.32, 1325–1334 (2004). ArticleCASPubMedPubMed Central Google Scholar
Smillie, D. A. & Sommerville, J. RNA helicase p54 (DDX6) is a shuttling protein involved in nuclear assembly of stored mRNP particles. J. Cell Sci.115, 395–407 (2002). CASPubMed Google Scholar
Ferraiuolo, M. A. et al. A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. J. Cell Biol.170, 913–924 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tanaka, K. J. et al. RAP55, a cytoplasmic mRNP component, represses translation in Xenopus oocytes. J. Biol. Chem.281, 40096–40106 (2006). ArticleCASPubMed Google Scholar
Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol.169, 871–884 (2005). ArticleCASPubMedPubMed Central Google Scholar
Durand, S. et al. Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies. J. Cell Biol.178, 1145–1160 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tahbaz, N., Carmichael, J. B. & Hobman, T. C. GERp95 belongs to a family of signal-transducing proteins and requires Hsp90 activity for stability and Golgi localization. J. Biol. Chem.276, 43294–43299 (2001). ArticleCASPubMed Google Scholar
Tahbaz, N. et al. Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep.5, 189–194 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mazroui, R. et al. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2α phosphorylation. Mol. Biol. Cell17, 4212–4219 (2006). ArticleCASPubMedPubMed Central Google Scholar
Schratt, G. M. et al. A brain-specific microRNA regulates dendritic spine development. Nature439, 283–289 (2006). This paper and reference 45 provide the first evidence that, under specific cellular conditions, mRNAs can be relieved from the miRNA-mediated repression and relocate from P-bodies to enter active translation. ArticleCASPubMed Google Scholar
Ashraf, S. I., McLoon, A. L., Sclarsic, S. M. & Kunes, S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell124, 191–205 (2006). CASPubMed Google Scholar
Sutton, M. A. & Schuman, E. M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell127, 49–58 (2006). ArticleCASPubMed Google Scholar
Kosik, K. S. The neuronal microRNA system. Nature Rev. Neurosci.7, 911–920 (2006). ArticleCAS Google Scholar
Lu, J. Y. & Schneider, R. J. Tissue distribution of AU-rich mRNA-binding proteins involved in regulation of mRNA decay. J. Biol. Chem.279, 12974–12979 (2004). ArticleCASPubMed Google Scholar
Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell130, 89–100 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jin, P., Alisch, R. S. & Warren, S. T. RNA and microRNAs in fragile X mental retardation. Nature Cell Biol.6, 1048–1053 (2004). ArticleCASPubMed Google Scholar
Gaidatzis, D., van Nimwegen, E., Hausser, J. & Zavolan, M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics8, 69 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nature Genet.39, 1278–1284 (2007). ArticleCASPubMed Google Scholar
Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′ UTR. Genes Dev.18, 132–137 (2004). ArticleCASPubMedPubMed Central Google Scholar
Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature403, 901–906 (2000). ArticleCASPubMed Google Scholar
Raught, B. & Gingras, A.-C. in Translational Control in Biology and Medicine (eds Mathews, M. B., Sonenberg, N. & Hershey, J. B.) 369–400 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2007). Google Scholar
Herbert, T. P. & Proud, C. G. in Translational Control in Biology and Medicine (eds Mathews, M. B., Sonenberg, N. & Hershey, J. B.) 601–624 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2007). Google Scholar
Wilczynska, A., Aigueperse, C., Kress, M., Dautry, F. & Weil, D. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J. Cell Sci.118, 981–992 (2005). ArticleCASPubMed Google Scholar
Schneider, M. D. et al. gawky is a component of cytoplasmic mRNA processing bodies required for early Drosophila development. J. Cell Biol.174, 349–358 (2006). ArticleCASPubMedPubMed Central Google Scholar
Vasudevan S, Tong Y, Steitz J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science318, 1931–1934 (2007). ArticleCASPubMed Google Scholar
Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell131, 1273–1286 (2007). ArticleCASPubMed Google Scholar