Hydrogen is an energy source for hydrothermal vent symbioses (original) (raw)

References

  1. Corliss, J. B. et al. Submarine thermal springs in the Galapagos Rift. Science 203, 1073–1083 (1979)
    Article ADS CAS PubMed Google Scholar
  2. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. & Waterbury, J. B. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213, 340–342 (1981)
    Article ADS CAS PubMed Google Scholar
  3. Felbeck, H. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213, 336–338 (1981)
    Article ADS CAS PubMed Google Scholar
  4. Childress, J. J. et al. A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233, 1306–1308 (1986)
    Article ADS CAS PubMed Google Scholar
  5. Cavanaugh, C. M., Levering, P. R., Maki, J. S., Mitchell, R. & Lidstrom, M. E. Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325, 346–348 (1987)
    Article ADS Google Scholar
  6. Dubilier, N., Bergin, C. & Lott, C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nature Rev. Microbiol. 6, 725–740 (2008)
    Article CAS Google Scholar
  7. Tivey, M. K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography (Wash. D.C.) 20, 50–65 (2007)
    Article Google Scholar
  8. Fisher, C. R., Takai, K. & Le Bris, N. Hydrothermal vent ecosystems. Oceanography (Wash. D.C.) 20, 14–23 (2007)
    Article Google Scholar
  9. Takai, K., Nakagawa, S., Reysenbach, A.-L. & Hock, J. In Back-Arc Spreading Systems—Geological, Biological, Chemical, and Physical Interactions (eds Christie, D. M. et al.) 185–213 (American Geophysical Union, 2006)
    Book Google Scholar
  10. Perner, M. et al. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15° N on the Mid-Atlantic Ridge. FEMS Microbiol. Ecol. 61, 97–109 (2007)
    Article CAS PubMed Google Scholar
  11. Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., de Carvalho, L. M. & Seifert, R. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15° N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chem. Geol. 242, 1–21 (2007)
    Article ADS CAS Google Scholar
  12. Amend, J. P. & Shock, E. L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25, 175–243 (2001)
    Article CAS PubMed Google Scholar
  13. Gebruk, A. V., Chevaldonné, P., Shank, T., Lutz, R. A. & Vrijenhoek, R. C. Deep-sea hydrothermal vent communities of the Logatchev area (14° 45′ N, Mid-Atlantic Ridge): diverse biotopes and high biomass. J. Mar. Biol. Assoc. UK 80, 383–393 (2000)
    Article Google Scholar
  14. Duperron, S. et al. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ. Microbiol. 8, 1441–1447 (2006)
    Article CAS PubMed Google Scholar
  15. Petersen, J. M. & Dubilier, N. Methanotrophic symbioses in marine invertebrates. Environ. Microbiol. Rep. 1, 319–335 (2009)
    Article CAS PubMed Google Scholar
  16. Wendeberg, A., Zielinski, F. U., Borowski, C. & Dubilier, N. Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis . ISME J. 10.1038/ismej.2011.81 (7 July 2011)
  17. Vignais, P. M. & Billoud, B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007)
    Article CAS PubMed Google Scholar
  18. Bernhard, M., Schwartz, E., Rietdorf, J. & Friedrich, B. The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling. J. Bacteriol. 178, 4522–4529 (1996)
    Article CAS PubMed PubMed Central Google Scholar
  19. Meyer, O. & Schlegel, H. G. Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov. Arch. Microbiol. 118, 35–43 (1978)
    Article CAS PubMed Google Scholar
  20. Schwartz, E. & Friedrich, B. in The Prokaryotes: A Handbook on the Biology of Bacteria (eds Dworkin, M. et al.) Vol. 2, 496–563 (Springer, 2006)
    Book Google Scholar
  21. Nelson, D. C., Hagan, K. D. & Edwards, D. B. The gill symbiont of the hydrothermal vent mussel Bathymodiolus thermophilus is a psychrophilic, chemoautotrophic, sulfur bacterium. Mar. Biol. 121, 487–495 (1995)
    Article Google Scholar
  22. Haase, K. M. et al. Diking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: the Lilliput field at 9° 33′ S. Mar. Geol. 266, 52–64 (2009)
    Article ADS Google Scholar
  23. Haase, K. M. et al. Young volcanism and related hydrothermal activity at 5° S on the slow-spreading southern Mid-Atlantic Ridge. Geochem. Geophys. Geosys. 8, Q11002 (2007)
    Article ADS Google Scholar
  24. Friedrich, B. & Schwartz, E. Molecular biology of hydrogen utilization in aerobic chemolithotrophs. Annu. Rev. Microbiol. 47, 351–383 (1993)
    Article CAS PubMed Google Scholar
  25. Zielinski, F. U. et al. Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels. Environ. Microbiol. 11, 1150–1167 (2009)
    Article CAS PubMed Google Scholar
  26. Ohmura, N., Sasaki, K., Matsumoto, N. & Saiki, H. Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans . J. Bacteriol. 184, 2081–2087 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  27. Imhoff, J. F., Hiraishi, A. & Sühling, J. in Bergey’s Manual of Systematic Bacteriology (eds Brenner, D. J. et al.) Vol. 2, part A, 119–132 (Springer, 2005)
    Book Google Scholar
  28. DiSpirito, A. A., Kunz, R. C., Choi, D.-W. & Zahn, J. A. in Respiration in Archaea and Bacteria. (ed. Zannoni, D. ) Vol. 2, 149–168 (Springer, 2004)
    Book Google Scholar
  29. Olson, J. W. & Maier, R. J. Molecular hydrogen as an energy source for Helicobacter pylori . Science 298, 1788–1790 (2002)
    Article ADS CAS PubMed Google Scholar
  30. Bowien, B. & Schlegel, H. G. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu. Rev. Microbiol. 35, 405–452 (1981)
    Article CAS PubMed Google Scholar
  31. Moraru, C., Lam, P., Fuchs, B. M., Kuypers, M. M. M. & Amann, R. GeneFISH—an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ. Microbiol. 12, 3057–3073 (2010)
    Article CAS PubMed Google Scholar
  32. Constant, P., Piossant, L. & Villemur, R. Tropospheric H2 budget and the response of its soil uptake under the changing environment. Sci. Total Environ. 407, 1809–1823 (2009)
    Article ADS CAS PubMed Google Scholar
  33. Tromp, T., Shia, R.-L., Allen, M., Eiler, J. M. & Yung, Y. L. Potential environmental impact of a hydrogen economy on the stratosphere. Science 300, 1740–1742 (2003)
    Article ADS CAS PubMed Google Scholar
  34. Perner, M., Petersen, J. M., Zielinski, F., Gennerich, H. H. & Seifert, R. Geochemical constraints on the diversity and activity of H2-oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent. FEMS Microbiol. Ecol. 74, 55–71 (2010)
    Article CAS PubMed Google Scholar
  35. Punshon, S., Moore, R. M. & Xie, H. Net loss rates and distribution of molecular hydrogen (H2) in mid-latitude coastal waters. Mar. Chem. 105, 129–139 (2007)
    Article CAS Google Scholar
  36. Welhan, J. A. & Craig, H. in Hydrothermal Processes at Seafloor Spreading Centers (eds Rona, P. A. et al.) 391–410 (Plenum, 1983)
    Book Google Scholar
  37. Lilley, M. D., DeAngelis, M. A. & Gordon, L. I. CH4, H2, CO and N2O in submarine hydrothermal vent waters. Nature 300, 48–50 (1982)
    Article ADS CAS Google Scholar
  38. Hügler, M., Petersen, J. M., Dubilier, N., Imhoff, J. F. & Sievert, S. M. Pathways of carbon and energy metabolism of the epibiotic community associated with the deep-sea hydrothermal vent shrimp Rimicaris exoculata . PLoS ONE 6, e16018 (2011)
    Article ADS PubMed PubMed Central Google Scholar
  39. Zhou, J. Z., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996)
    CAS PubMed PubMed Central Google Scholar
  40. Csáki, R., Hanczár, T., Bodrossy, L., Murrell, J. C. & Kovács, K. L. Molecular characterization of structural genes coding for a membrane bound hydrogenase in Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 205, 203–207 (2001)
    Article PubMed Google Scholar
  41. Petersen, J. M. et al. Dual symbiosis of the vent shrimp Rimicaris exoculata with filamentous gamma- and epsilonproteobacteria at four Mid-Atlantic Ridge hydrothermal vent fields. Environ. Microbiol. 12, 2204–2218 (2010)
    CAS PubMed Google Scholar
  42. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004)
    Article CAS PubMed PubMed Central Google Scholar
  43. Katoh, K., Asimenos, G. & Toh, H. Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 39–64. (2009)
  44. Aziz, R. K. et al. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008)
    Article PubMed PubMed Central Google Scholar
  45. Moraru, C., Moraru, G., Fuchs, B. M. & Amann, R. Concepts and software for a rational design of polynucleotide probes. Environ. Microbiol. Rep. 3, 69–78 (2011)
    Article CAS PubMed Google Scholar
  46. Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  47. Wankel, S. D. et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nature Geosci. 4, 461–468 (2011)
    Article ADS CAS Google Scholar
  48. Le Pennec, M. & Hily, A. Anatomie, structure et ultrastructure de la branchie d’un Mytilidae des sites hydrothermeaux du Pacifique oriental. Oceanol. Acta 7, 517–523 (1984)
    Google Scholar

Download references