Expression of tumour-specific antigens underlies cancer immunoediting (original) (raw)

References

  1. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol. 3, 991–998 (2002)
    Article CAS Google Scholar
  2. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001)
    Article ADS CAS Google Scholar
  3. Swann, J. B. et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc. Natl Acad. Sci. USA 105, 652–656 (2008)
    Article ADS CAS Google Scholar
  4. Qin, Z. & Blankenstein, T. A cancer immunosurveillance controversy. Nature Immunol. 5, 3–4 (2004); author reply. 5, 4–5 (2004)
  5. Kirsch, D. G. et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nature Med. 13, 992–997 (2007)
    Article CAS Google Scholar
  6. DuPage, M. et al. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell 19, 72–85 (2011)
    Article CAS Google Scholar
  7. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007)
    Article ADS CAS Google Scholar
  8. Cheung, A. F., Dupage, M. J., Dong, H. K., Chen, J. & Jacks, T. Regulated expression of a tumor-associated antigen reveals multiple levels of T-cell tolerance in a mouse model of lung cancer. Cancer Res. 68, 9459–9468 (2008)
    Article CAS Google Scholar
  9. Khong, H. T. & Restifo, N. P. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nature Immunol. 3, 999–1005 (2002)
    Article CAS Google Scholar
  10. Prehn, R. T. & Main, J. M. Immunity to methylcholanthrene-induced sarcomas. J. Natl. Cancer Inst. 18, 769–778 (1957)
    CAS PubMed Google Scholar
  11. Dubey, P. et al. The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J. Exp. Med. 185, 695–705 (1997)
    Article CAS Google Scholar
  12. Monach, P. A., Meredith, S. C., Siegel, C. T. & Schreiber, H. A unique tumor antigen produced by a single amino acid substitution. Immunity 2, 45–59 (1995)
    Article CAS Google Scholar
  13. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Naturehttp://dx.doi.org/10.1038/nature10755 (this issue)
  14. Uyttenhove, C., Maryanski, J. & Boon, T. Escape of mouse mastocytoma P815 after nearly complete rejection is due to antigen-loss variants rather than immunosuppression. J. Exp. Med. 157, 1040–1052 (1983)
    Article CAS Google Scholar
  15. Zhou, G., Lu, Z., McCadden, J. D., Levitsky, H. I. & Marson, A. L. Reciprocal changes in tumor antigenicity and antigen-specific T cell function during tumor progression. J. Exp. Med. 200, 1581–1592 (2004)
    Article CAS Google Scholar
  16. Stauss, H. J., Van Waes, C., Fink, M. A., Starr, B. & Schreiber, H. Identification of a unique tumor antigen as rejection antigen by molecular cloning and gene transfer. J. Exp. Med. 164, 1516–1530 (1986)
    Article CAS Google Scholar
  17. Guo, Z. S. et al. De novo induction of a cancer/testis antigen by 5-aza-2'-deoxycytidine augments adoptive immunotherapy in a murine tumor model. Cancer Res. 66, 1105–1113 (2006)
    Article CAS Google Scholar
  18. Güre, A. O., Wei, I. J., Old, L. J. & Chen, Y. T. The SSX gene family: characterization of 9 complete genes. Int. J. Cancer 101, 448–453 (2002)
    Article Google Scholar
  19. Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008); correction. 28, 723 (2008)
    Article CAS Google Scholar
  20. Schietinger, A. et al. A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314, 304–308 (2006)
    Article ADS CAS Google Scholar
  21. Zitvogel, L., Tesniere, A. & Kroemer, G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nature Rev. Immunol. 6, 715–727 (2006)
    Article CAS Google Scholar
  22. Willimsky, G. & Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437, 141–146 (2005)
    Article ADS CAS Google Scholar
  23. Embleton, M. J. & Heidelberger, C. Antigenicity of clones of mouse prostate cells transformed in vitro. Int. J. Cancer 9, 8–18 (1972)
    Article CAS Google Scholar
  24. Hewitt, H. B., Blake, E. R. & Walder, A. S. A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin. Br. J. Cancer 33, 241–259 (1976)
    Article CAS Google Scholar
  25. Scott, O. C. Tumor transplantation and tumor immunity: a personal view. Cancer Res. 51, 757–763 (1991)
    CAS PubMed Google Scholar
  26. Rangarajan, A. & Weinberg, R. A. Opinion: Comparative biology of mouse versus human cells: modelling human cancer in mice. Nature Rev. Cancer 3, 952–959 (2003)
    Article CAS Google Scholar
  27. DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nature Protocols 4, 1064–1072 (2009)
    Article CAS Google Scholar

Download references