Grant, G.A. & Miller, J.F. Effect of neonatal thymectomy on the induction of sarcomata in C57BL mice. Nature205, 1124–1125 (1965). ArticleCASPubMed Google Scholar
Nishizuka, Y., Nakakuki, K. & Usui, M. Enhancing effect of thymectomy on hepatotumorigenesis in Swiss mice following neonatal injection of 20-methylcholanthrene. Nature205, 1236–1238 (1965). Article Google Scholar
Trainin, N., Linker-Israeli, M., Small, M. & Boiato-Chen, L. Enhancement of lung adenoma formation by neonatal thymectomy in mice treated with 7,12-dimethylbenz(a)anthracene or urethan. Int. J. Cancer2, 326–336 (1967). ArticleCASPubMed Google Scholar
Burstein, N.A. & Law, L.W. Neonatal thymectomy and non-viral mammary tumours in mice. Nature231, 450–452 (1971). ArticleCASPubMed Google Scholar
Sanford, B.H., Kohn, H.I., Daly, J.J. & Soo, S.F. Long-term spontaneous tumor incidence in neonatally thymectomized mice. J. Immunol.110, 1437–1439 (1973). CASPubMed Google Scholar
Klein, G. Immunological surveillance against neoplasia. Harvey Lect., 71–102 (1973).
Flanagan, S.P. 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet. Res.8, 295–309 (1966). ArticleCASPubMed Google Scholar
Stutman, O. Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science183, 534–536 (1974). ArticleCASPubMed Google Scholar
Stutman, O. in Proceedings of the International Workshop on Nude Mice Vol. 1 (eds. Rygaard, J. & Poulsen, C.) 257–264 (Gustav Fischer, Stuttgart 1973). Google Scholar
Stutman, O. Chemical carcinogenesis in nude mice: comparison between nude mice from homozygous and heterozygous matings and effect of age and carcinogen dose. J. Natl. Cancer Inst.2, 353–358 (1979). Google Scholar
Outzen, H.C., Custer, R.P., Eaton, G.J. & Prehn, R.T. Spontaneous and induced tumor incidence in germfree “nude” mice. J. Reticuloendothel. Soc.17, 1–9 (1975). CASPubMed Google Scholar
Stutman, O. in The Nude Mouse in Experimental and Clinical Research (eds. Fogh, J. & Giovanella, B. C.) 411–435 (Academic, New York, 1978). Google Scholar
Rygaard, J. & Povlsen, C.O. Is immunological surveillance not a cell-mediated immune function? Transplantation17, 135–136 (1974). ArticleCASPubMed Google Scholar
Rygaard, J. & Povlsen, C.O. The mouse mutant nude does not develop spontaneous tumours. An argument against immunological surveillance. Acta Pathol. Microbiol. Scand. [B] Microbiol. Immunol.82, 99–106 (1974). CAS Google Scholar
Maleckar, J.R. & Sherman, L.A. The composition of the T cell receptor repertoire in nude mice. J. Immunol.138, 3873–3876 (1987). CASPubMed Google Scholar
Ikehara, S., Pahwa, R.N., Fernandes, G., Hansen, C.T. & Good, R.A. Functional T cells in athymic nude mice. Proc. Natl. Acad. Sci. USA81, 886–888 (1984). ArticleCASPubMedPubMed Central Google Scholar
Kouri, R.E. & Nebert, D.W. in Origins of Human Cancer (eds. Hiatt, H. H., Watson, J. D. & Winsten, J. A.) 811–835 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1977). Google Scholar
Hayday, A.C. γδ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol.18, 975–1026 (2000). ArticleCASPubMed Google Scholar
Prehn, R.T. Perspectives on oncogenesis: does immunity stimulate or inhibit neoplasia? J. Reticuloenothel. Soc.10, 1–16 (1970). Google Scholar
Herberman, R.B. & Holden, H.T. Natural cell-mediated immunity. Adv. Cancer Res.27, 305–377 (1978). ArticleCASPubMed Google Scholar
Engel, A.M. et al. Methylcholanthrene-induced sarcomas in nude mice have short induction times and relatively low levels of surface MHC class I expression. APMIS104, 629–639 (1996). ArticleCASPubMed Google Scholar
Engel, A.M., Svane, I.M., Rygaard, J. & Werdelin, O. MCA sarcomas induced in scid mice are more immunogenic than MCA sarcomas induced in congenic, immunocompetent mice. Scand. J. Immunol.45, 463–470 (1997). ArticleCASPubMed Google Scholar
Schuler, W. et al. Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell46, 963–972 (1986). ArticleCASPubMed Google Scholar
Featherstone, C. & Jackson, S.P. DNA double-strand break repair. Curr. Biol.9, R759–R761 (1999). ArticleCASPubMed Google Scholar
Dighe, A.S., Richards, E., Old, L.J. & Schreiber, R.D. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN-γ receptors. Immunity1, 447–456 (1994). ArticleCASPubMed Google Scholar
Kaplan, D.H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. USA95, 7556–7561 (1998). ArticleCASPubMedPubMed Central Google Scholar
Street, S.E., Cretney, E. & Smyth, M.J. Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis. Blood97, 192–197 (2001). ArticleCASPubMed Google Scholar
Street, S.E., Trapani, J.A., MacGregor, D. & Smyth, M.J. Suppression of lymphoma and epithelial malignancies effected by interferon γ. J. Exp. Med.196, 129–134 (2002). ArticleCASPubMedPubMed Central Google Scholar
Russell, J.H. & Ley, T.J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol.20, 323–370 (2002). ArticleCASPubMed Google Scholar
van den Broek, M.F. et al. Decreased tumor surveillance in perforin-deficient mice. J.Exp.Med.184, 1781–1790 (1996). ArticleCASPubMed Google Scholar
Smyth, M.J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med.192, 755–760 (2000). ArticleCASPubMedPubMed Central Google Scholar
Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell68, 855–867 (1992). ArticleCASPubMed Google Scholar
Shankaran, V. et al. IFN-γ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature410, 1107–1111 (2001). ArticleCASPubMed Google Scholar
Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science294, 605–609 (2001). ArticleCASPubMed Google Scholar
Penn, I. Malignant Tumors in Organ Transplant Recipients (Springer-Verlag, New York, 1970).
Gatti, R.A. & Good, R.A. Occurrence of malignancy in immunodeficiency diseases. A literature review. Cancer28, 89–98 (1971). ArticleCASPubMed Google Scholar
Birkeland, S.A. et al. Cancer risk after renal transplantation in the Nordic countries, 1964-1986. Int. J. Cancer60, 183–189 (1995). ArticleCASPubMed Google Scholar
Sheil, A.G.R. in Kidney Transplantation (ed. Morris, P. J.) 558–570 (Saunders, Philadelphia, 2001). Google Scholar
Boshoff, C. & Weiss, R. AIDS-related malignancies. Nature Rev. Cancer2, 373–382 (2002). ArticleCAS Google Scholar
Hoover, R.N. in Origins of Human Cancer (eds. Hiatt, H. H., Watson, J. D. & Winsten, J. A.) 369–379 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1977). Google Scholar
Pham, S.M. et al. Solid tumors after heart transplantation: lethality of lung cancer. Ann. Thorac. Surg.60, 1623–1626 (1995). ArticleCASPubMed Google Scholar
Clark, W.H. Jr et al. Model predicting survival in stage I melanoma based on tumor progression. J. Natl. Cancer Inst.81, 1893–1904 (1989). ArticlePubMed Google Scholar
Clemente, C.G. et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer77, 1303–1310 (1996). ArticleCASPubMed Google Scholar
Mihm, M.C. Jr, Clemente, C.G. & Cascinelli, N. Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response. Lab. Invest.74, 43–47 (1996). PubMed Google Scholar
Rilke, F. et al. Prognostic significance of HER-2/neu expression in breast cancer and its relationship to other prognostic factors. Int. J. Cancer49, 44–49 (1991). ArticleCASPubMed Google Scholar
Lipponen, P.K., Eskelinen, M.J., Jauhiainen, K., Harju, E. & Terho, R. Tumour infiltrating lymphocytes as an independent prognostic factor in transitional cell bladder cancer. Eur. J. Cancer29A, 69–75 (1992). CASPubMed Google Scholar
Nacopoulou, L., Azaris, P., Papacharalampous, N. & Davaris, P. Prognostic significance of histologic host response in cancer of the large bowel. Cancer47, 930–936 (1981). ArticleCASPubMed Google Scholar
Naito, Y. et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res.58, 3491–3494 (1998). CASPubMed Google Scholar
Epstein, N.A. & Fatti, L.P. Prostatic carcinoma: some morphological features affecting prognosis. Cancer37, 2455–2465 (1976). ArticleCASPubMed Google Scholar
Deligdisch, L., Jacobs, A.J. & Cohen, C.J. Histologic correlates of virulence in ovarian adenocarcinoma. II. Morphologic correlates of host response. Am. J. Obstet. Gynecol.144, 885–889 (1982). ArticleCASPubMed Google Scholar
Palma, L., Di Lorenzo, N. & Guidetti, B. Lymphocytic infiltrates in primary glioblastomas and recidivous gliomas. Incidence, fate, and relevance to prognosis in 228 operated cases. J. Neurosurg.49, 854–861 (1978). ArticleCASPubMed Google Scholar
Uyttenhove, C., Van Snick, J. & Boon, T. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. I. Rejection by syngeneic mice. J. Exp. Med.152, 1175–1183 (1980). ArticleCASPubMed Google Scholar
Urban, J.L., Holland, J.M., Kripke, M.L. & Schreiber, H. Immunoselection of tumor cell variants by mice suppressed with ultraviolet radiation. J. Exp. Med.156, 1025–1041 (1982). ArticleCASPubMed Google Scholar
Svane, I.M. et al. Chemically induced sarcomas from nude mice are more immunogenic than similar sarcomas from congenic normal mice. Eur. J. Immunol.26, 1844–1850 (1996). ArticleCASPubMed Google Scholar
Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instabilities in human cancers. Nature396, 643–649 (1998). ArticleCASPubMed Google Scholar
Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86, 353–364 (1996). ArticleCASPubMed Google Scholar
Smyth, M.J., Godfrey, D.I. & Trapani, J.A. A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunol.2, 293–299 (2001). ArticleCAS Google Scholar
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol.12, 991–1045 (1994). ArticleCASPubMed Google Scholar
Yokoyama, W.M. Now you see it, now you don't! Nature Immunol.1, 95–97 (2000). ArticleCAS Google Scholar
Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity12, 721–727 (2000). ArticleCASPubMed Google Scholar
Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature413, 165–171 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bromberg, J.F., Horvath, C.M., Wen, Z., Schreiber, R.D. & Darnell, J.E. Jr. Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon α and interferon γ. Proc. Natl. Acad. Sci. USA93, 7673–7678 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kumar, A., Commane, M., Flickinger, T.W., Horvath, C.M. & Stark, G.R. Defective TNF-α-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science278, 1630–1632 (1997). ArticleCASPubMed Google Scholar
Luster, A.D. & Ravetch, J.V. Biochemical characterization of a γ interferon-inducible cytokine (IP-10). J. Exp. Med.166, 1084–1097 (1987). ArticleCASPubMed Google Scholar
Liao, F. et al. Human Mig chemokine: biochemical and functional characterization. J. Exp. Med.182, 1301–1314 (1995). ArticleCASPubMed Google Scholar
Cole, K.E. et al. Interferon-inducible T cell α chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J. Exp. Med.187, 2009–2021 (1998). ArticleCASPubMedPubMed Central Google Scholar
Luster, A.D. & Leder, P. IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo. J. Exp. Med.178, 1057–1065 (1993). ArticleCASPubMed Google Scholar
Sgadari, C., Angiolillo, A.L. & Tosato, G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood87, 3877–3882 (1996). ArticleCASPubMed Google Scholar
Coughlin, C.M. et al. Tumor cell responses to IFN-γ affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity9, 25–34 (1998). ArticleCASPubMed Google Scholar
Qin, Z. & Blankenstein, T. CD4+ T cell–mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN-γ receptor expression by nonhematopoietic cells. Immunity12, 677–686 (2000). ArticleCASPubMed Google Scholar
Bancroft, G.J., Schreiber, R.D. & Unanue, E.R. Natural immunity: a T-cell-independent pathway of macrophage activation, defined in the scid mouse. Immunol. Rev.124, 5–24 (1991). ArticleCASPubMed Google Scholar
Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol.13, 251–276 (1995). ArticleCASPubMed Google Scholar
Ikeda, H., Old, L.J. & Schreiber, R.D. The roles of IFN-γ in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev.13, 95–109 (2002). ArticleCASPubMed Google Scholar
Takeda, K. et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med.195, 161–169 (2002). ArticleCASPubMedPubMed Central Google Scholar
Pardoll, D.M. Spinning molecular immunology into successful immunotherapy. Nature Rev. Immunol.2, 227–238 (2002). ArticleCAS Google Scholar
Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med.195, 327–333 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med.195, 343–351 (2002). ArticleCASPubMedPubMed Central Google Scholar
Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N.M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med.195, 335–341 (2002). ArticleCASPubMedPubMed Central Google Scholar
Smyth, M.J., Crowe, N.Y. & Godfrey, D.I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol.13, 459–463 (2001). ArticleCASPubMed Google Scholar
Noguchi, Y., Jungbluth, A., Richards, E. & Old, L.J. Effect of interleukin 12 on tumor induction by 3-methylcholanthrene. Proc. Natl. Acad. Sci. USA93, 11798–11801 (1996). ArticleCASPubMedPubMed Central Google Scholar