Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills (original) (raw)

References

  1. VanLehn, K. Cognitive skill acquisition. Annu. Rev. Neurosci. 47, 513–539 (1996)
    CAS Google Scholar
  2. Yin, H. H. et al. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nature Neurosci. 12, 333–341 (2009)
    Article CAS Google Scholar
  3. Barnes, T. D., Kubota, Y., Hu, D., Jin, D. Z. & Graybiel, A. M. Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437, 1158–1161 (2005)
    Article ADS CAS Google Scholar
  4. Kimchi, E. Y. & Laubach, M. Dynamic encoding of action selection by the medial striatum. J. Neurosci. 29, 3148–3159 (2009)
    Article CAS Google Scholar
  5. Brashers-Krug, T., Shadmehr, R. & Bizzi, E. Consolidation in human motor memory. Nature 382, 252–255 (1996)
    Article ADS CAS Google Scholar
  6. Fetz, E. E. Volitional control of neural activity: implications for brain–computer interfaces. J. Physiol. (Lond.) 579, 571–579 (2007)
    Article CAS Google Scholar
  7. Hikosaka, O. et al. Parallel neural networks for learning sequential procedures. Trends Neurosci. 22, 464–471 (1999)
    Article CAS Google Scholar
  8. Brasted, P. J. & Wise, S. P. Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum. Eur. J. Neurosci. 19, 721–740 (2004)
    Article Google Scholar
  9. Rioult-Pedotti, M. S., Friedman, D. & Donghue, J. P. Learning-induced LTP in neocortex. Science 290, 533–536 (2000)
    Article ADS CAS Google Scholar
  10. Georgopoulos, A. P., Taira, M. & Lukashin, A. Cognitive neurophysiology of the motor cortex. Science 260, 47–52 (1993)
    Article ADS CAS Google Scholar
  11. Gandolfo, F., Li, C., Benda, B. J., Schioppa, C. P. & Bizzi, E. Cortical correlates of learning in monkeys adapting to a new dynamical environment. Proc. Natl Acad. Sci. USA 97, 2259–2263 (2000)
    Article ADS CAS Google Scholar
  12. Fincham, J. M. & Anderson, J. R. Distinct roles of the anterior cingulate and prefrontal cortex in the acquisition and performance of a cognitive skill. Proc. Natl Acad. Sci. USA 103, 12941–12946 (2006)
    Article ADS CAS Google Scholar
  13. Badre, D., Kayser, A. S. & D’Esposito, M. Frontal cortex and the discovery of abstract action rules. Neuron 66, 315–326 (2010)
    Article CAS Google Scholar
  14. Taylor, D. M., Tillery, S. I. & Schwartz, A. B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002)
    Article ADS CAS Google Scholar
  15. Carmena, J. M. et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1, 193–208 (2003)
    Article CAS Google Scholar
  16. Ganguly, K. & Carmena, J. M. Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol. 7, e1000153 (2009)
    Article Google Scholar
  17. Ganguly, K., Dimitrov, D. F., Wallis, J. D. & Carmena, J. M. Reversible large-scale modification of cortical networks during neuroprosthetic control. Nature Neurosci. 14, 662–667 (2011)
    Article CAS Google Scholar
  18. Beauchamp, M. H., Dagher, A., Aston, J. A. & Doyon, J. Dynamic functional changes associated with cognitive skill learning of an adapted version of the Tower of London task. Neuroimage 20, 1649–1660 (2003)
    Article CAS Google Scholar
  19. Poldrack, R. A., Prabhakaran, V., Seger, C. A. & Gabrieli, J. D. Striatal activation during acquisition of a cognitive skill. Neuropsychology 13, 564–574 (1999)
    Article CAS Google Scholar
  20. Pasupathy, A. & Miller, E. K. Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433, 873–876 (2005)
    Article ADS CAS Google Scholar
  21. Karni, A. et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc. Natl Acad. Sci. USA 95, 861–868 (1998)
    Article ADS CAS Google Scholar
  22. Venkatraman, S., Jin, X., Costa, R. M. & Carmena, J. M. Investigating neural correlates of behavior in freely behaving rodents using inertial sensors. J. Neurophysiol. 104, 569–575 (2010)
    Article Google Scholar
  23. Balleine, B. W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998)
    Article CAS Google Scholar
  24. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behav. Brain Res. 166, 189–196 (2006)
    Article Google Scholar
  25. Hilario, M. R., Clouse, E., Yin, H. H. & Costa, R. M. Endocannabinoid signaling is critical for habit formation. Front. Integr. Neurosci. 1, 1–12 (2007)
    Article Google Scholar
  26. Costa, R. M., Cohen, D. & Nicolelis, M. A. Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Curr. Biol. 14, 1124–1134 (2004)
    Article CAS Google Scholar
  27. Jin, X. & Costa, R. M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010)
    Article ADS CAS Google Scholar
  28. Miyachi, S., Hikosaka, O. & Lu, X. Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Exp. Brain Res. 146, 122–126 (2002)
    Article Google Scholar
  29. Calabresi, P., Pisani, A., Mercuri, N. B. & Bernardi, G. Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur. J. Neurosci. 4, 929–935 (1992)
    Article Google Scholar
  30. Dang, M. T. et al. Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc. Natl Acad. Sci. USA 103, 15254–15259 (2006)
    Article ADS CAS Google Scholar

Download references