Functional complexity and regulation through RNA dynamics (original) (raw)

References

  1. Kendrew, J. C. et al. A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181, 662–666 (1958).
    Article ADS CAS PubMed Google Scholar
  2. Rould, M. A., Perona, J. J., Söll, D. & Steitz, T. A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 Å resolution. Science 246, 1135–1142 (1989).
    Article ADS CAS PubMed Google Scholar
  3. Pley, H. W., Flaherty, K. M. & McKay, D. B. Three-dimensional structure of a hammerhead ribozyme. Nature 372, 68–74 (1994).
    Article ADS CAS PubMed Google Scholar
  4. Scott, W. G., Finch, J. T. & Klug, A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81, 991–1002 (1995).
    Article CAS PubMed Google Scholar
  5. Wang, S., Karbstein, K., Peracchi, A., Beigelman, L. & Herschlag, D. Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochemistry 38, 14363–14378 (1999).
    Article CAS PubMed Google Scholar
  6. Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nature Chem. Biol. 5, 789–796 (2009).
    Article CAS Google Scholar
  7. Al-Hashimi, H. M. & Walter, N. G. RNA dynamics: it is about time. Curr. Opin. Struct. Biol. 18, 321–329 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  8. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).
    Article ADS CAS PubMed Google Scholar
  9. Cruz, J. A. & Westhof, E. The dynamic landscapes of RNA architecture. Cell 136, 604–609 (2009).
    Article CAS PubMed Google Scholar
  10. Bailor, M. H., Mustoe, A. M., Brooks, C. L. 3rd & Al-Hashimi, H. M. Topological constraints: using RNA secondary structure to model 3D conformation, folding pathways, and dynamic adaptation. Curr. Opin. Struct. Biol. 21, 296–305 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  11. Schultes, E. A., Spasic, A., Mohanty, U. & Bartel, D. P. Compact and ordered collapse of randomly generated RNA sequences. Nature Struct. Mol. Biol. 12, 1130–1136 (2005).
    Article CAS Google Scholar
  12. Schultes, E. A., Hraber, P. T. & LaBean, T. H. Estimating the contributions of selection and self-organization in RNA secondary structure. J. Mol. Evol. 49, 76–83 (1999).
    Article ADS CAS PubMed Google Scholar
  13. Fürtig, B., Wenter, P., Pitsch, S. & Schwalbe, H. Probing mechanism and transition state of RNA refolding. ACS Chem. Biol. 5, 753–765 (2010).
    Article PubMed CAS Google Scholar
  14. Bailor, M. H., Sun, X. & Al-Hashimi, H. M. Topology links RNA secondary structure with global conformation, dynamics, and adaptation. Science 327, 202–206 (2010). This article reports the simple topological constraints that are governed by steric and stereochemical forces severely restrict the allowed orientation of helices across two-way junctions.
    Article ADS CAS PubMed Google Scholar
  15. Mustoe, A. M., Bailor, M. H., Teixeira, R. M., Brooks, C. L. 3rd & Al-Hashimi, H. M. New insights into the fundamental role of topological constraints as a determinant of two-way junction conformation. Nucleic Acids Res. 40, 892–904 (2012).
    Article CAS PubMed Google Scholar
  16. Chu, V. B. et al. Do conformational biases of simple helical junctions influence RNA folding stability and specificity? RNA 15, 2195–2205 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  17. Venditti, V., Clos, L. 2nd, Niccolai, N. & Butcher, S. E. Minimum-energy path for a U6 RNA conformational change involving protonation, base-pair rearrangement and base flipping. J. Mol. Biol. 391, 894–905 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  18. Fourmy, D., Yoshizawa, S. & Puglisi, J. D. Paromomycin binding induces a local conformational change in the A-site of 16S rRNA. J. Mol. Biol. 277, 333–345 (1998).
    Article CAS PubMed Google Scholar
  19. Le, S. Y., Zhang, K. & Maizel, J. V. Jr. RNA molecules with structure dependent functions are uniquely folded. Nucleic Acids Res. 30, 3574–3582 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  20. Stelzer, A. C., Kratz, J. D., Zhang, Q. & Al-Hashimi, H. M. RNA dynamics by design: biasing ensembles towards the ligand-bound state. Angew. Chem. Int. Ed. Engl. 49, 5731–5733 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  21. Shankar, N. et al. NMR reveals the absence of hydrogen bonding in adjacent UU and AG mismatches in an isolated internal loop from ribosomal RNA. Biochemistry 46, 12665–12678 (2007).
    Article CAS PubMed Google Scholar
  22. Frank, J. & Gonzalez, R. L., Jr. Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu. Rev. Biochem. 79, 381–412 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  23. Haller, A., Souliere, M. F. & Micura, R. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc. Chem. Res. 44, 1339–1348 (2011).
    Article CAS PubMed Google Scholar
  24. Paukstelis, P. J., Chen, J. H., Chase, E., Lambowitz, A. M. & Golden, B. L. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA. Nature 451, 94–97 (2008).
    Article ADS CAS PubMed Google Scholar
  25. Puglisi, J. D., Tan, R., Calnan, B. J., Frankel, A. D. & Williamson, J. R. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science 257, 76–80 (1992).
    Article ADS CAS PubMed Google Scholar
  26. Orr, J. W., Hagerman, P. J. & Williamson, J. R. Protein and Mg2+-induced conformational changes in the S15 binding site of 16S ribosomal RNA. J. Mol. Biol. 275, 453–464 (1998).
    Article CAS PubMed Google Scholar
  27. Turner, B., Melcher, S. E., Wilson, T. J., Norman, D. G. & Lilley, D. M. Induced fit of RNA on binding the L7Ae protein to the kink-turn motif. RNA 11, 1192–1200 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  28. Falb, M., Amata, I., Gabel, F., Simon, B. & Carlomagno, T. Structure of the K-turn U4 RNA: a combined NMR and SANS study. Nucleic Acids Res. 38, 6274–6285 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  29. Kim, H. D. et al. Mg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules. Proc. Natl Acad. Sci. USA 99, 4284–4289 (2002).
    Article ADS CAS PubMed PubMed Central Google Scholar
  30. Zacharias, M. & Hagerman, P. J. The influence of symmetric internal loops on the flexibility of RNA. J. Mol. Biol. 257, 276–289 (1996).
    Article CAS PubMed Google Scholar
  31. Zhang, Q., Stelzer, A. C., Fisher, C. K. & Al-Hashimi, H. M. Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature 450, 1263–1267 (2007).
    Article ADS CAS PubMed Google Scholar
  32. Shajani, Z., Drobny, G. & Varani, G. Binding of U1A protein changes RNA dynamics as observed by 13C NMR relaxation studies. Biochemistry 46, 5875–5883 (2007).
    Article CAS PubMed Google Scholar
  33. Bokinsky, G. et al. Two distinct binding modes of a protein cofactor with its target RNA. J. Mol. Biol. 361, 771–784 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  34. Bardaro, M. F. Jr., Shajani, Z., Patora-Komisarska, K., Robinson, J. A. & Varani, G. How binding of small molecule and peptide ligands to HIV-1 TAR alters the RNA motional landscape. Nucleic Acids Res. 37, 1529–1540 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  35. Herschlag, D., Khosla, M., Tsuchihashi, Z. & Karpel, R. L. An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J. 13, 2913–2924 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  36. Pyle, A. M. & Green, J. B. RNA folding. Curr. Opin. Struct. Biol. 5, 303–310 (1995).
    Article CAS PubMed Google Scholar
  37. Treiber, D.K. & Williamson, J.R. Beyond kinetic traps in RNA folding. Curr. Opin. Struct. Biol. 11, 309–314 (2001).
    Article CAS PubMed Google Scholar
  38. Hirling, H., Scheffner, M., Restle, T. & Stahl, H. RNA helicase activity associated with the human p68 protein. Nature 339, 562–564 (1989).
    Article ADS CAS PubMed Google Scholar
  39. Yang, Q. & Jankowsky, E. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44, 13591–13601 (2005).
    Article CAS PubMed Google Scholar
  40. Will, C. L. & Lührmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  41. Kosowski, T. R., Keys, H. R., Quan, T. K. & Ruby, S. W. DExD/H-box Prp5 protein is in the spliceosome during most of the splicing cycle. RNA 15, 1345–1362 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  42. Maeder, C., Kutach, A. K. & Guthrie, C. ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nature Struct. Mol. Biol. 16, 42–48 (2009).
    Article CAS Google Scholar
  43. Schwer, B. A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release. Mol. Cell 30, 743–754 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  44. Bhaskaran, H. & Russell, R. Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 449, 1014–1018 (2007).
    Article ADS CAS PubMed PubMed Central Google Scholar
  45. Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002). This article reports the discovery of an RNA switch in the 5′ untranslated region of bacterial mRNA that regulates gene expression in response to ligands without assistance from proteins.
    Article ADS CAS PubMed Google Scholar
  46. Cromie, M. J., Shi, Y., Latifi, T. & Groisman, E. A. An RNA sensor for intracellular Mg2+. Cell 125, 71–84 (2006).
    Article CAS PubMed Google Scholar
  47. Nechooshtan, G., Elgrably-Weiss, M., Sheaffer, A., Westhof, E. & Altuvia, S. A pH-responsive riboregulator. Genes Dev. 23, 2650–2662 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  48. Greenleaf, W. J., Frieda, K. L., Foster, D. A. Woodside, M. T. & Block, S. M. Direct observation of hierarchical folding in single riboswitch aptamers. Science 319, 630–633 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  49. Mandal, M. et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306, 275–279 (2004).
    Article ADS CAS PubMed Google Scholar
  50. Sudarsan, N. et al. Tandem riboswitch architectures exhibit complex gene control functions. Science 314, 300–304 (2006).
    Article ADS CAS PubMed Google Scholar
  51. Lee, E. R., Baker, J. L., Weinberg, Z., Sudarsan, N. & Breaker, R. R. An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329, 845–848 (2010).
    Article ADS CAS PubMed PubMed Central Google Scholar
  52. Ferre-D'Amare, A. R., Zhou, K. & Doudna, J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature 395, 567–574 (1998).
    Article ADS CAS PubMed Google Scholar
  53. Ke, A., Zhou, K., Ding, F., Cate, J. H. D. & Doudna, J. A. A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature 429, 201–205 (2004). This article reports a significant local conformational change in the active site of the HDV ribozyme is observed post-cleavage and is associated with ejection of the substrate and a catalytically critical divalent metal ion.
    Article ADS CAS PubMed Google Scholar
  54. Harris, D. A., Rueda, D. & Walter, N. G. Local conformational changes in the catalytic core of the _trans_-acting hepatitis delta virus ribozyme accompany catalysis. Biochemistry 41, 12051–12061 (2002).
    Article CAS PubMed Google Scholar
  55. Lamanna, A. C. & Karbstein, K. An RNA conformational switch regulates pre-18S rRNA cleavage. J. Mol. Biol. 405, 3–17 (2011).
    Article CAS PubMed Google Scholar
  56. Nocker, A. et al. A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res. 29, 4800–4807 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  57. Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561 (2002).
    Article PubMed Google Scholar
  58. Watts, J. M. et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460, 711–716 (2009).
    Article ADS CAS PubMed PubMed Central Google Scholar
  59. Grundy, F. J., Winkler, W. C. & Henkin, T. M. tRNA-mediated transcription antitermination in vitro: codon-anticodon pairing independent of the ribosome. Proc. Natl Acad. Sci. USA 99, 11121–11126 (2002).
    Article ADS CAS PubMed PubMed Central Google Scholar
  60. Babitzke, P. & Yanofsky, C. Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. Proc. Natl Acad. Sci. USA 90, 133–137 (1993).
    Article ADS CAS PubMed PubMed Central Google Scholar
  61. Diaz-Toledano, R., Ariza-Mateos, A., Birk, A., Martinez-Garcia, B. & Gomez, J. In vitro characterization of a miR-122-sensitive double-helical switch element in the 5´ region of hepatitis C virus RNA. Nucleic Acids Res. 37, 5498–5510 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  62. Ray, P. S. et al. A stress-responsive RNA switch regulates VEGFA expression. Nature 457, 915–919 (2009). This article reports that the 3′ untranslated region of human VEGFA mRNA undergoes a binary conformational switch in response to inflammatory and hypoxic protein stress signals to regulate VEGFA expression.
    Article ADS CAS PubMed Google Scholar
  63. Cheah, M. T., Wachter, A., Sudarsan, N. & Breaker, R. R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447, 497–500 (2007). This article reports a secondary structural change in a eukaryotic thiamine pyrophosphate riboswitch regulates gene expression through the control of alternative splicing.
    Article ADS CAS PubMed Google Scholar
  64. Kedde, M. et al. A Pumilio-induced RNA structure switch in p27-3′ untranslated region controls miR-221 and miR-222 accessibility. Nature Cell Biol. 12, 1014–1020 (2010).
    Article CAS PubMed Google Scholar
  65. Casey, J. L. Control of ADAR1 editing of hepatitis delta virus RNAs. Curr. Top. Microbiol. Immunol. 353, 123–143 (2012).
    CAS PubMed PubMed Central Google Scholar
  66. Abbink, T. E., Ooms, M., Haasnoot, P. C. & Berkhout, B. The HIV-1 leader RNA conformational switch regulates RNA dimerization but does not regulate mRNA translation. Biochemistry 44, 9058–9066 (2005).
    Article CAS PubMed Google Scholar
  67. Miyazaki, Y. et al. An RNA structural switch regulates diploid genome packaging by Moloney murine leukemia virus. J. Mol. Biol. 396, 141–152 (2010). This article reports that dimerization of the 5′ untranslated region of the Moloney murine leukaemia virus results in a secondary structural change that promotes genome packaging.
    Article CAS PubMed Google Scholar
  68. Giege, R. Toward a more complete view of tRNA biology. Nature Struct. Mol. Biol. 15, 1007–1014 (2008).
    Article CAS Google Scholar
  69. Mulder, A. M. et al. Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit. Science 330, 673–677 (2010).
    Article ADS CAS PubMed PubMed Central Google Scholar
  70. Adilakshmi, T., Bellur, D. L. & Woodson, S. A. Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly. Nature 455, 1268–1272 (2008).
    Article ADS CAS PubMed PubMed Central Google Scholar
  71. Menichelli, E., Isel, C., Oubridge, C. & Nagai, K. Protein-induced conformational changes of RNA during the assembly of human signal recognition particle. J. Mol. Biol. 367, 187–203 (2007).
    Article CAS PubMed Google Scholar
  72. Stone, M. D. et al. Stepwise protein-mediated RNA folding directs assembly of telomerase ribonucleoprotein. Nature 446, 458–461 (2007).
    Article ADS CAS PubMed PubMed Central Google Scholar
  73. Held, W. A., Ballou, B., Mizushima, S. & Nomura, M. Assembly mapping of 30S ribosomal proteins from Escherichia coli. Further studies. J. Biol. Chem. 249, 3103–3111 (1974).
    Article CAS PubMed Google Scholar
  74. Agalarov, S. C., Prasad, G. S., Funke, P. M., Stout, C. D. & Williamson, J. R. Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain. Science 288, 107–112 (2000).
    Article ADS CAS PubMed Google Scholar
  75. Duncan, C. D. & Weeks, K. M. Nonhierarchical ribonucleoprotein assembly suggests a strain-propagation model for protein-facilitated RNA folding. Biochemistry 49, 5418–5425 (2010).
    Article CAS PubMed Google Scholar
  76. Wilson, T. J., Nahas, M., Ha, T. & Lilley, D. M. Folding and catalysis of the hairpin ribozyme. Biochem. Soc. Trans. 33, 461–465 (2005).
    Article CAS PubMed Google Scholar
  77. Zhang, Q., Kim, N. K., Peterson, R. D., Wang, Z. & Feigon, J. Structurally conserved five nucleotide bulge determines the overall topology of the core domain of human telomerase RNA. Proc. Natl Acad. Sci. USA 107, 18761–18768 (2010).
    Article ADS CAS PubMed PubMed Central Google Scholar
  78. Solomatin, S. V., Greenfeld, M., Chu, S. & Herschlag, D. Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature 463, 681–684 (2010). This article reports the observation of slowly interconverting catalytically active states in a ribozyme, thereby establishing the coexistence of multiple native states.
    Article ADS CAS PubMed PubMed Central Google Scholar
  79. Greenfeld, M., Solomatin, S. V. & Herschlag, D. Removal of covalent heterogeneity reveals simple folding behavior for P4–P6 RNA. J. Biol. Chem. 286, 19872–19879 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  80. Frank, J. & Agrawal, R. K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).
    Article ADS CAS PubMed Google Scholar
  81. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).
    Article CAS PubMed Google Scholar
  82. Zhang, W., Dunkle, J. A. & Cate, J. H. Structures of the ribosome in intermediate states of ratcheting. Science 325, 1014–1017 (2009).
    Article ADS CAS PubMed PubMed Central Google Scholar
  83. Ratje, A. H. et al. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468, 713–716 (2010).
    Article ADS CAS PubMed PubMed Central Google Scholar
  84. Fischer, N., Konevega, A. L. Wintermeyer, W., Rodnina, M. V. & Stark, H. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466, 329–333 (2010). This article demonstrates the cryo-electron microscopy observation of thermally driven tRNA retrotranslocation on the ribosome.
    Article ADS CAS PubMed Google Scholar
  85. Shoji, S., Walker, S. E. & Fredrick, K. Reverse translocation of tRNA in the ribosome. Mol. Cell 24, 931–942 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  86. Ogle, J. M., Murphy, F. V., Tarry, M. J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).
    Article CAS PubMed Google Scholar
  87. Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nature Struct. Biol. 10, 899–906 (2003).
    Article CAS PubMed Google Scholar
  88. Lee, T. H., Blanchard, S. C., Kim, H. D., Puglisi, J. D. & Chu, S. The role of fluctuations in tRNA selection by the ribosome. Proc. Natl Acad. Sci. USA 104, 13661–13665 (2007).
    Article ADS CAS PubMed PubMed Central Google Scholar
  89. Schmeing, T. M. et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009).
    Article ADS CAS PubMed PubMed Central Google Scholar
  90. Voorhees, R. M., Schmeing, T. M., Kelley, A. C. & Ramakrishnan, V. The mechanism for activation of GTP hydrolysis on the ribosome. Science 330, 835–838 (2010).
    Article ADS CAS PubMed PubMed Central Google Scholar
  91. Pape, T., Wintermeyer, W. & Rodnina, M. V. Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nature Struct. Mol. Biol. 7, 104–107 (2000).
    Article CAS Google Scholar
  92. Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S. & Puglisi, J. D. tRNA selection and kinetic proofreading in translation. Nature Struct. Mol. Biol. 11, 1008–1014 (2004). This important single-molecule FRET study directly observes the dynamics of tRNA initial selection and proofreading by the ribosome.
    Article CAS Google Scholar
  93. Fei, J. et al., Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proc. Natl Acad. Sci. USA 106, 15702–15707 (2009).
    Article ADS CAS PubMed PubMed Central Google Scholar
  94. Blaha, G., Stanley, R. E. & Steitz, T. A. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325, 966–970 (2009).
    Article ADS CAS PubMed PubMed Central Google Scholar
  95. Dunkle, J. A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984 (2011).
    Article ADS CAS PubMed PubMed Central Google Scholar
  96. Laurberg, M. et al. Structural basis for translation termination on the 70S ribosome. Nature 454, 852–857 (2008).
    Article ADS CAS PubMed Google Scholar
  97. Cornish, P. V., Ermolenko, D. N., Noller, H. F. & Ha, T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30, 578–588 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  98. Tama, F., Valle, M., Frank, J. & Brooks, C. L 3rd. Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc. Natl Acad. Sci. USA 100, 9319–9323 (2003).
    Article ADS CAS PubMed PubMed Central Google Scholar
  99. Green, N. J., Grundy, F. J. & Henkin, T. M. The T box mechanism: tRNA as a regulatory molecule. FEBS Lett. 584, 318–324 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  100. Cornish, P. V. et al. Following movement of the L1 stalk between three functional states in single ribosomes. Proc. Natl Acad. Sci. USA 106, 2571–2576 (2009).
    Article ADS CAS PubMed PubMed Central Google Scholar

Download references