Functional complexity and regulation through RNA dynamics (original) (raw)
References
Kendrew, J. C. et al. A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature181, 662–666 (1958). ArticleADSCASPubMed Google Scholar
Rould, M. A., Perona, J. J., Söll, D. & Steitz, T. A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 Å resolution. Science246, 1135–1142 (1989). ArticleADSCASPubMed Google Scholar
Pley, H. W., Flaherty, K. M. & McKay, D. B. Three-dimensional structure of a hammerhead ribozyme. Nature372, 68–74 (1994). ArticleADSCASPubMed Google Scholar
Scott, W. G., Finch, J. T. & Klug, A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell81, 991–1002 (1995). ArticleCASPubMed Google Scholar
Wang, S., Karbstein, K., Peracchi, A., Beigelman, L. & Herschlag, D. Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochemistry38, 14363–14378 (1999). ArticleCASPubMed Google Scholar
Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nature Chem. Biol.5, 789–796 (2009). ArticleCAS Google Scholar
Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science254, 1598–1603 (1991). ArticleADSCASPubMed Google Scholar
Cruz, J. A. & Westhof, E. The dynamic landscapes of RNA architecture. Cell136, 604–609 (2009). ArticleCASPubMed Google Scholar
Bailor, M. H., Mustoe, A. M., Brooks, C. L. 3rd & Al-Hashimi, H. M. Topological constraints: using RNA secondary structure to model 3D conformation, folding pathways, and dynamic adaptation. Curr. Opin. Struct. Biol.21, 296–305 (2011). ArticleCASPubMedPubMed Central Google Scholar
Schultes, E. A., Spasic, A., Mohanty, U. & Bartel, D. P. Compact and ordered collapse of randomly generated RNA sequences. Nature Struct. Mol. Biol.12, 1130–1136 (2005). ArticleCAS Google Scholar
Schultes, E. A., Hraber, P. T. & LaBean, T. H. Estimating the contributions of selection and self-organization in RNA secondary structure. J. Mol. Evol.49, 76–83 (1999). ArticleADSCASPubMed Google Scholar
Fürtig, B., Wenter, P., Pitsch, S. & Schwalbe, H. Probing mechanism and transition state of RNA refolding. ACS Chem. Biol.5, 753–765 (2010). ArticlePubMedCAS Google Scholar
Bailor, M. H., Sun, X. & Al-Hashimi, H. M. Topology links RNA secondary structure with global conformation, dynamics, and adaptation. Science327, 202–206 (2010). This article reports the simple topological constraints that are governed by steric and stereochemical forces severely restrict the allowed orientation of helices across two-way junctions. ArticleADSCASPubMed Google Scholar
Mustoe, A. M., Bailor, M. H., Teixeira, R. M., Brooks, C. L. 3rd & Al-Hashimi, H. M. New insights into the fundamental role of topological constraints as a determinant of two-way junction conformation. Nucleic Acids Res.40, 892–904 (2012). ArticleCASPubMed Google Scholar
Chu, V. B. et al. Do conformational biases of simple helical junctions influence RNA folding stability and specificity? RNA15, 2195–2205 (2009). ArticleCASPubMedPubMed Central Google Scholar
Venditti, V., Clos, L. 2nd, Niccolai, N. & Butcher, S. E. Minimum-energy path for a U6 RNA conformational change involving protonation, base-pair rearrangement and base flipping. J. Mol. Biol.391, 894–905 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fourmy, D., Yoshizawa, S. & Puglisi, J. D. Paromomycin binding induces a local conformational change in the A-site of 16S rRNA. J. Mol. Biol.277, 333–345 (1998). ArticleCASPubMed Google Scholar
Le, S. Y., Zhang, K. & Maizel, J. V. Jr. RNA molecules with structure dependent functions are uniquely folded. Nucleic Acids Res.30, 3574–3582 (2002). ArticleCASPubMedPubMed Central Google Scholar
Stelzer, A. C., Kratz, J. D., Zhang, Q. & Al-Hashimi, H. M. RNA dynamics by design: biasing ensembles towards the ligand-bound state. Angew. Chem. Int. Ed. Engl.49, 5731–5733 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shankar, N. et al. NMR reveals the absence of hydrogen bonding in adjacent UU and AG mismatches in an isolated internal loop from ribosomal RNA. Biochemistry46, 12665–12678 (2007). ArticleCASPubMed Google Scholar
Frank, J. & Gonzalez, R. L., Jr. Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu. Rev. Biochem.79, 381–412 (2010). ArticleCASPubMedPubMed Central Google Scholar
Haller, A., Souliere, M. F. & Micura, R. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc. Chem. Res.44, 1339–1348 (2011). ArticleCASPubMed Google Scholar
Paukstelis, P. J., Chen, J. H., Chase, E., Lambowitz, A. M. & Golden, B. L. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA. Nature451, 94–97 (2008). ArticleADSCASPubMed Google Scholar
Puglisi, J. D., Tan, R., Calnan, B. J., Frankel, A. D. & Williamson, J. R. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science257, 76–80 (1992). ArticleADSCASPubMed Google Scholar
Orr, J. W., Hagerman, P. J. & Williamson, J. R. Protein and Mg2+-induced conformational changes in the S15 binding site of 16S ribosomal RNA. J. Mol. Biol.275, 453–464 (1998). ArticleCASPubMed Google Scholar
Turner, B., Melcher, S. E., Wilson, T. J., Norman, D. G. & Lilley, D. M. Induced fit of RNA on binding the L7Ae protein to the kink-turn motif. RNA11, 1192–1200 (2005). ArticleCASPubMedPubMed Central Google Scholar
Falb, M., Amata, I., Gabel, F., Simon, B. & Carlomagno, T. Structure of the K-turn U4 RNA: a combined NMR and SANS study. Nucleic Acids Res.38, 6274–6285 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kim, H. D. et al. Mg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules. Proc. Natl Acad. Sci. USA99, 4284–4289 (2002). ArticleADSCASPubMedPubMed Central Google Scholar
Zacharias, M. & Hagerman, P. J. The influence of symmetric internal loops on the flexibility of RNA. J. Mol. Biol.257, 276–289 (1996). ArticleCASPubMed Google Scholar
Zhang, Q., Stelzer, A. C., Fisher, C. K. & Al-Hashimi, H. M. Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature450, 1263–1267 (2007). ArticleADSCASPubMed Google Scholar
Shajani, Z., Drobny, G. & Varani, G. Binding of U1A protein changes RNA dynamics as observed by 13C NMR relaxation studies. Biochemistry46, 5875–5883 (2007). ArticleCASPubMed Google Scholar
Bardaro, M. F. Jr., Shajani, Z., Patora-Komisarska, K., Robinson, J. A. & Varani, G. How binding of small molecule and peptide ligands to HIV-1 TAR alters the RNA motional landscape. Nucleic Acids Res.37, 1529–1540 (2009). ArticleCASPubMedPubMed Central Google Scholar
Herschlag, D., Khosla, M., Tsuchihashi, Z. & Karpel, R. L. An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J.13, 2913–2924 (1994). ArticleCASPubMedPubMed Central Google Scholar
Treiber, D.K. & Williamson, J.R. Beyond kinetic traps in RNA folding. Curr. Opin. Struct. Biol.11, 309–314 (2001). ArticleCASPubMed Google Scholar
Hirling, H., Scheffner, M., Restle, T. & Stahl, H. RNA helicase activity associated with the human p68 protein. Nature339, 562–564 (1989). ArticleADSCASPubMed Google Scholar
Yang, Q. & Jankowsky, E. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry44, 13591–13601 (2005). ArticleCASPubMed Google Scholar
Kosowski, T. R., Keys, H. R., Quan, T. K. & Ruby, S. W. DExD/H-box Prp5 protein is in the spliceosome during most of the splicing cycle. RNA15, 1345–1362 (2009). ArticleCASPubMedPubMed Central Google Scholar
Maeder, C., Kutach, A. K. & Guthrie, C. ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nature Struct. Mol. Biol.16, 42–48 (2009). ArticleCAS Google Scholar
Schwer, B. A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release. Mol. Cell30, 743–754 (2008). ArticleCASPubMedPubMed Central Google Scholar
Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature419, 952–956 (2002). This article reports the discovery of an RNA switch in the 5′ untranslated region of bacterial mRNA that regulates gene expression in response to ligands without assistance from proteins. ArticleADSCASPubMed Google Scholar
Cromie, M. J., Shi, Y., Latifi, T. & Groisman, E. A. An RNA sensor for intracellular Mg2+. Cell125, 71–84 (2006). ArticleCASPubMed Google Scholar
Nechooshtan, G., Elgrably-Weiss, M., Sheaffer, A., Westhof, E. & Altuvia, S. A pH-responsive riboregulator. Genes Dev.23, 2650–2662 (2009). ArticleCASPubMedPubMed Central Google Scholar
Greenleaf, W. J., Frieda, K. L., Foster, D. A. Woodside, M. T. & Block, S. M. Direct observation of hierarchical folding in single riboswitch aptamers. Science319, 630–633 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mandal, M. et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science306, 275–279 (2004). ArticleADSCASPubMed Google Scholar
Sudarsan, N. et al. Tandem riboswitch architectures exhibit complex gene control functions. Science314, 300–304 (2006). ArticleADSCASPubMed Google Scholar
Lee, E. R., Baker, J. L., Weinberg, Z., Sudarsan, N. & Breaker, R. R. An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science329, 845–848 (2010). ArticleADSCASPubMedPubMed Central Google Scholar
Ferre-D'Amare, A. R., Zhou, K. & Doudna, J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature395, 567–574 (1998). ArticleADSCASPubMed Google Scholar
Ke, A., Zhou, K., Ding, F., Cate, J. H. D. & Doudna, J. A. A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature429, 201–205 (2004). This article reports a significant local conformational change in the active site of the HDV ribozyme is observed post-cleavage and is associated with ejection of the substrate and a catalytically critical divalent metal ion. ArticleADSCASPubMed Google Scholar
Harris, D. A., Rueda, D. & Walter, N. G. Local conformational changes in the catalytic core of the _trans_-acting hepatitis delta virus ribozyme accompany catalysis. Biochemistry41, 12051–12061 (2002). ArticleCASPubMed Google Scholar
Lamanna, A. C. & Karbstein, K. An RNA conformational switch regulates pre-18S rRNA cleavage. J. Mol. Biol.405, 3–17 (2011). ArticleCASPubMed Google Scholar
Nocker, A. et al. A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res.29, 4800–4807 (2001). ArticleCASPubMedPubMed Central Google Scholar
Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell110, 551–561 (2002). ArticlePubMed Google Scholar
Grundy, F. J., Winkler, W. C. & Henkin, T. M. tRNA-mediated transcription antitermination in vitro: codon-anticodon pairing independent of the ribosome. Proc. Natl Acad. Sci. USA99, 11121–11126 (2002). ArticleADSCASPubMedPubMed Central Google Scholar
Babitzke, P. & Yanofsky, C. Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. Proc. Natl Acad. Sci. USA90, 133–137 (1993). ArticleADSCASPubMedPubMed Central Google Scholar
Diaz-Toledano, R., Ariza-Mateos, A., Birk, A., Martinez-Garcia, B. & Gomez, J. In vitro characterization of a miR-122-sensitive double-helical switch element in the 5´ region of hepatitis C virus RNA. Nucleic Acids Res.37, 5498–5510 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ray, P. S. et al. A stress-responsive RNA switch regulates VEGFA expression. Nature457, 915–919 (2009). This article reports that the 3′ untranslated region of humanVEGFAmRNA undergoes a binary conformational switch in response to inflammatory and hypoxic protein stress signals to regulateVEGFAexpression. ArticleADSCASPubMed Google Scholar
Cheah, M. T., Wachter, A., Sudarsan, N. & Breaker, R. R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature447, 497–500 (2007). This article reports a secondary structural change in a eukaryotic thiamine pyrophosphate riboswitch regulates gene expression through the control of alternative splicing. ArticleADSCASPubMed Google Scholar
Kedde, M. et al. A Pumilio-induced RNA structure switch in p27-3′ untranslated region controls miR-221 and miR-222 accessibility. Nature Cell Biol.12, 1014–1020 (2010). ArticleCASPubMed Google Scholar
Casey, J. L. Control of ADAR1 editing of hepatitis delta virus RNAs. Curr. Top. Microbiol. Immunol.353, 123–143 (2012). CASPubMedPubMed Central Google Scholar
Abbink, T. E., Ooms, M., Haasnoot, P. C. & Berkhout, B. The HIV-1 leader RNA conformational switch regulates RNA dimerization but does not regulate mRNA translation. Biochemistry44, 9058–9066 (2005). ArticleCASPubMed Google Scholar
Miyazaki, Y. et al. An RNA structural switch regulates diploid genome packaging by Moloney murine leukemia virus. J. Mol. Biol.396, 141–152 (2010). This article reports that dimerization of the 5′ untranslated region of the Moloney murine leukaemia virus results in a secondary structural change that promotes genome packaging. ArticleCASPubMed Google Scholar
Giege, R. Toward a more complete view of tRNA biology. Nature Struct. Mol. Biol.15, 1007–1014 (2008). ArticleCAS Google Scholar
Adilakshmi, T., Bellur, D. L. & Woodson, S. A. Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly. Nature455, 1268–1272 (2008). ArticleADSCASPubMedPubMed Central Google Scholar
Menichelli, E., Isel, C., Oubridge, C. & Nagai, K. Protein-induced conformational changes of RNA during the assembly of human signal recognition particle. J. Mol. Biol.367, 187–203 (2007). ArticleCASPubMed Google Scholar
Held, W. A., Ballou, B., Mizushima, S. & Nomura, M. Assembly mapping of 30S ribosomal proteins from Escherichia coli. Further studies. J. Biol. Chem.249, 3103–3111 (1974). ArticleCASPubMed Google Scholar
Agalarov, S. C., Prasad, G. S., Funke, P. M., Stout, C. D. & Williamson, J. R. Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain. Science288, 107–112 (2000). ArticleADSCASPubMed Google Scholar
Duncan, C. D. & Weeks, K. M. Nonhierarchical ribonucleoprotein assembly suggests a strain-propagation model for protein-facilitated RNA folding. Biochemistry49, 5418–5425 (2010). ArticleCASPubMed Google Scholar
Wilson, T. J., Nahas, M., Ha, T. & Lilley, D. M. Folding and catalysis of the hairpin ribozyme. Biochem. Soc. Trans.33, 461–465 (2005). ArticleCASPubMed Google Scholar
Zhang, Q., Kim, N. K., Peterson, R. D., Wang, Z. & Feigon, J. Structurally conserved five nucleotide bulge determines the overall topology of the core domain of human telomerase RNA. Proc. Natl Acad. Sci. USA107, 18761–18768 (2010). ArticleADSCASPubMedPubMed Central Google Scholar
Solomatin, S. V., Greenfeld, M., Chu, S. & Herschlag, D. Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature463, 681–684 (2010). This article reports the observation of slowly interconverting catalytically active states in a ribozyme, thereby establishing the coexistence of multiple native states. ArticleADSCASPubMedPubMed Central Google Scholar
Greenfeld, M., Solomatin, S. V. & Herschlag, D. Removal of covalent heterogeneity reveals simple folding behavior for P4–P6 RNA. J. Biol. Chem.286, 19872–19879 (2011). ArticleCASPubMedPubMed Central Google Scholar
Frank, J. & Agrawal, R. K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature406, 318–322 (2000). ArticleADSCASPubMed Google Scholar
Ratje, A. H. et al. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature468, 713–716 (2010). ArticleADSCASPubMedPubMed Central Google Scholar
Fischer, N., Konevega, A. L. Wintermeyer, W., Rodnina, M. V. & Stark, H. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature466, 329–333 (2010). This article demonstrates the cryo-electron microscopy observation of thermally driven tRNA retrotranslocation on the ribosome. ArticleADSCASPubMed Google Scholar
Ogle, J. M., Murphy, F. V., Tarry, M. J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell111, 721–732 (2002). ArticleCASPubMed Google Scholar
Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nature Struct. Biol.10, 899–906 (2003). ArticleCASPubMed Google Scholar
Lee, T. H., Blanchard, S. C., Kim, H. D., Puglisi, J. D. & Chu, S. The role of fluctuations in tRNA selection by the ribosome. Proc. Natl Acad. Sci. USA104, 13661–13665 (2007). ArticleADSCASPubMedPubMed Central Google Scholar
Voorhees, R. M., Schmeing, T. M., Kelley, A. C. & Ramakrishnan, V. The mechanism for activation of GTP hydrolysis on the ribosome. Science330, 835–838 (2010). ArticleADSCASPubMedPubMed Central Google Scholar
Pape, T., Wintermeyer, W. & Rodnina, M. V. Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nature Struct. Mol. Biol.7, 104–107 (2000). ArticleCAS Google Scholar
Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S. & Puglisi, J. D. tRNA selection and kinetic proofreading in translation. Nature Struct. Mol. Biol.11, 1008–1014 (2004). This important single-molecule FRET study directly observes the dynamics of tRNA initial selection and proofreading by the ribosome. ArticleCAS Google Scholar
Fei, J. et al., Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proc. Natl Acad. Sci. USA106, 15702–15707 (2009). ArticleADSCASPubMedPubMed Central Google Scholar
Blaha, G., Stanley, R. E. & Steitz, T. A. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science325, 966–970 (2009). ArticleADSCASPubMedPubMed Central Google Scholar
Laurberg, M. et al. Structural basis for translation termination on the 70S ribosome. Nature454, 852–857 (2008). ArticleADSCASPubMed Google Scholar
Cornish, P. V., Ermolenko, D. N., Noller, H. F. & Ha, T. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell30, 578–588 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tama, F., Valle, M., Frank, J. & Brooks, C. L 3rd. Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc. Natl Acad. Sci. USA100, 9319–9323 (2003). ArticleADSCASPubMedPubMed Central Google Scholar
Cornish, P. V. et al. Following movement of the L1 stalk between three functional states in single ribosomes. Proc. Natl Acad. Sci. USA106, 2571–2576 (2009). ArticleADSCASPubMedPubMed Central Google Scholar