An archaeal origin of eukaryotes supports only two primary domains of life (original) (raw)

References

  1. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977)A landmark paper that, together with ref. 4, reported the discovery of the Archaea and discussed its far-reaching implications for early evolution.
    ADS CAS PubMed PubMed Central Google Scholar
  2. Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006)
    ADS CAS PubMed Google Scholar
  3. Woese, C. R. On the evolution of cells. Proc. Natl Acad. Sci. USA 99, 8742–8747 (2002)
    ADS CAS PubMed PubMed Central Google Scholar
  4. Woese, C. R. & Fox, G. E. The concept of cellular evolution. J. Mol. Evol. 10, 1–6 (1977)
    ADS CAS PubMed Google Scholar
  5. Doolittle, W. F. & Brown, J. R. Tempo, mode, the progenote, and the universal root. Proc. Natl Acad. Sci. USA 91, 6721–6728 (1994)
    ADS CAS PubMed PubMed Central Google Scholar
  6. Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355–9359 (1989)Together with ref. 7 , this paper presented the first evidence for rooting the tree of life on the bacterial stem, but see ref. 5 for a still-relevant discussion of these analyses and other contemporary ideas about early evolution.
    ADS CAS PubMed PubMed Central Google Scholar
  7. Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661–6665 (1989)
    ADS CAS PubMed PubMed Central Google Scholar
  8. Dagan, T., Roettger, M., Bryant, D. & Martin, W. Genome networks root the tree of life between prokaryotic domains. Genome Biol. Evol. 2, 379–392 (2010)
    PubMed PubMed Central Google Scholar
  9. Lake, J. A., Skophammer, R. G., Herbold, C. W. & Servin, J. A. Genome beginnings: rooting the tree of life. Phil. Trans. R. Soc. B 364, 2177–2185 (2009)
    CAS PubMed PubMed Central Google Scholar
  10. Skophammer, R. G., Servin, J. A., Herbold, C. W. & Lake, J. A. Evidence for a gram-positive, eubacterial root of the tree of life. Mol. Biol. Evol. 24, 1761–1768 (2007)
    CAS PubMed Google Scholar
  11. Cavalier-Smith, T. Rooting the tree of life by transition analyses. Biol. Direct 1, 19 (2006)
    PubMed PubMed Central Google Scholar
  12. Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20356–20361 (2008)The first of a series of recent papers demonstrating that analyses of core genes using new phylogenetic models favour the eocyte tree rather than the three-domains tree.
    ADS CAS PubMed PubMed Central Google Scholar
  13. Doolittle, W. F. & Zhaxybayeva, O. in The Prokaryotes: Prokaryotic Biology and Symbiotic Associations (ed. Rosenberg, E. ) (Springer, 2013)A very clear discussion about the issues facing the integration of phylogenetics and classification given the evidence for extensive lateral gene transfer.
    Google Scholar
  14. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990)Woese and colleagues present their arguments for the rooted three-domains tree of life.
    ADS CAS PubMed PubMed Central Google Scholar
  15. Madigan, M. T., Martingo, J. M., Stahl, D. A. & Clark, D. P. Brock Biology of Microorganisms 13th edn (Benjamin Cummings, 2010)
    Google Scholar
  16. Pace, N. R. Time for a change. Nature 441, 289 (2006)
    ADS CAS PubMed Google Scholar
  17. Pace, N. R. Mapping the tree of life: progress and prospects. Microbiol. Mol. Biol. Rev. 73, 565–576 (2009)
    CAS PubMed PubMed Central Google Scholar
  18. Lake, J. A., Henderson, E., Oakes, M. & Clark, M. W. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl Acad. Sci. USA 81, 3786–3790 (1984)This paper presents comparisons of ribosomal structure in Bacteria, Archaea and eukaryotes, providing the initial motivation for the eocyte hypothesis.
    ADS CAS PubMed PubMed Central Google Scholar
  19. Gribaldo, S., Poole, A. M., Daubin, V., Forterre, P. & Brochier-Armanet, C. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nature Rev. Microbiol. 8, 743–752 (2010)
    CAS Google Scholar
  20. Knoll, A. H., Javaux, E. J., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Phil. Trans. R. Soc. B 361, 1023–1038 (2006)
    CAS PubMed PubMed Central Google Scholar
  21. Philippe, H. & Forterre, P. The rooting of the universal tree of life is not reliable. J. Mol. Evol. 49, 509–523 (1999)
    ADS CAS PubMed Google Scholar
  22. Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil. Trans. R. Soc. B 364, 2197–2207 (2009)
    PubMed PubMed Central Google Scholar
  23. Penny, D., McComish, B. J., Charleston, M. A. & Hendy, M. D. Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J. Mol. Evol. 53, 711–723 (2001)
    ADS CAS PubMed Google Scholar
  24. Ho, S. Y. & Jermiin, L. Tracing the decay of the historical signal in biological sequence data. Syst. Biol. 53, 623–637 (2004)
    PubMed Google Scholar
  25. Lartillot, N., Brinkmann, H. & Philippe, H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7 (suppl. 1). S4 (2007)
    PubMed PubMed Central Google Scholar
  26. Philippe, H. et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9, e1000602 (2011)
    CAS PubMed PubMed Central Google Scholar
  27. Gouy, M. & Li, W. H. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature 339, 145–147 (1989)
    ADS CAS PubMed Google Scholar
  28. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987)
    CAS PubMed PubMed Central Google Scholar
  29. Olsen, G. J. Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harb. Symp. Quant. Biol. 52, 825–837 (1987)
    CAS PubMed Google Scholar
  30. Foster, P. G. & Hickey, D. A. Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J. Mol. Evol. 48, 284–290 (1999)
    ADS CAS PubMed Google Scholar
  31. Foster, P. G. Modeling compositional heterogeneity. Syst. Biol. 53, 485–495 (2004)
    PubMed Google Scholar
  32. Hirt, R. P. et al. Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl Acad. Sci. USA 96, 580–585 (1999)
    ADS CAS PubMed PubMed Central Google Scholar
  33. Lake, J. A. Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc. Natl Acad. Sci. USA 91, 1455–1459 (1994)
    ADS CAS PubMed PubMed Central Google Scholar
  34. Yang, Z. & Roberts, D. On the use of nucleic acid sequences to infer early branchings in the tree of life. Mol. Biol. Evol. 12, 451–458 (1995)An important early contribution demonstrating that modelling changing nucleotide composition in RNA sequences from different species supported the eocyte tree.
    CAS PubMed Google Scholar
  35. Felsenstein, J. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401–410 (1978)
    Google Scholar
  36. Yang, Z. & Rannala, B. Molecular phylogenetics: principles and practice. Nature Rev. Genet. 13, 303–314 (2012)
    CAS PubMed Google Scholar
  37. Lake, J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331, 184–186 (1988)
    ADS CAS PubMed Google Scholar
  38. Sidow, A. & Wilson, A. C. Compositional statistics: an improvement of evolutionary parsimony and its application to deep branches in the tree of life. J. Mol. Evol. 31, 51–68 (1990)
    ADS CAS PubMed Google Scholar
  39. Tourasse, N. J. & Gouy, M. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol. Phylogenet. Evol. 13, 159–168 (1999)
    CAS PubMed Google Scholar
  40. Yutin, N., Makarova, K. S., Mekhedov, S. L., Wolf, Y. I. & Koonin, E. V. The deep archaeal roots of eukaryotes. Mol. Biol. Evol. 25, 1619–1630 (2008)
    CAS PubMed PubMed Central Google Scholar
  41. Harris, J. K., Kelley, S. T., Spiegelman, G. B. & Pace, N. R. The genetic core of the universal ancestor. Genome Res. 13, 407–412 (2003)
    CAS PubMed PubMed Central Google Scholar
  42. Katoh, K., Kuma, K. & Miyata, T. Genetic algorithm-based maximum-likelihood analysis for molecular phylogeny. J. Mol. Evol. 53, 477–484 (2001)
    ADS CAS PubMed Google Scholar
  43. Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006)
    ADS CAS PubMed Google Scholar
  44. Lake, J. A. The order of sequence alignment can bias the selection of tree topology. Mol. Biol. Evol. 8, 378–385 (1991)
    CAS PubMed Google Scholar
  45. Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E. & Stanhope, M. J. Universal trees based on large combined protein sequence data sets. Nature Genet. 28, 281–285 (2001)
    CAS PubMed Google Scholar
  46. Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004)One of the most notable improvements in phylogenetic modelling in the last decade, providing a Bayesian framework for accommodating across-site compositional heterogeneity—a key feature of molecular sequence data.
    CAS PubMed Google Scholar
  47. Guy, L. & Ettema, T. J. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011)
    CAS PubMed Google Scholar
  48. Williams, T. A., Foster, P. G., Nye, T. M., Cox, C. J. & Embley, T. M. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc. R. Soc. Lond. B 279, 4870–4879 (2012)
    CAS Google Scholar
  49. Lasek-Nesselquist, E. & Gogarten, J. P. The effects of model choice and mitigating bias on the ribosomal tree of life. Mol. Phylogenet. Evol. 69, 17–38 (2013)
    PubMed Google Scholar
  50. Pester, M., Schleper, C. & Wagner, M. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr. Opin. Microbiol. 14, 300–306 (2011)
    CAS PubMed PubMed Central Google Scholar
  51. Lloyd, K. G. et al. Predominant archaea in marine sediments degrade detrital proteins. Nature 496, 215–218 (2013)
    ADS CAS PubMed Google Scholar
  52. Graybeal, A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9–17 (1998)
    CAS PubMed Google Scholar
  53. Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008)
    ADS CAS PubMed PubMed Central Google Scholar
  54. Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev. Microbiol. 6, 245–252 (2008)
    CAS Google Scholar
  55. Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011)
    CAS PubMed Google Scholar
  56. Kelly, S., Wickstead, B. & Gull, K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc. R. Soc. Lond. B 278, 1009–1018 (2011)
    CAS Google Scholar
  57. Ettema, T. J., Lindas, A. C. & Bernander, R. An actin-based cytoskeleton in archaea. Mol. Microbiol. 80, 1052–1061 (2011)
    CAS PubMed Google Scholar
  58. Yutin, N. & Koonin, E. V. Archaeal origin of tubulin. Biol. Direct 7, 10 (2012)
    CAS PubMed PubMed Central Google Scholar
  59. Koonin, E. V., Makarova, K. S. & Elkins, J. G. Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and “Korarchaeota”. Biol. Direct 2, 38 (2007)
    PubMed PubMed Central Google Scholar
  60. Csurös, M. & Miklos, I. Streamlining and large ancestral genomes in Archaea inferred with a phylogenetic birth-and-death model. Mol. Biol. Evol. 26, 2087–2095 (2009)
    PubMed PubMed Central Google Scholar
  61. Wolf, Y. I., Makarova, K. S., Yutin, N. & Koonin, E. V. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol. Direct 7, 46 (2012)
    CAS PubMed PubMed Central Google Scholar
  62. Ribeiro, S. & Golding, G. B. The mosaic nature of the eukaryotic nucleus. Mol. Biol. Evol. 15, 779–788 (1998)Together with ref. 63 , this paper presented some of the first tree-based evidence that eukaryotes are genomic chimaeras containing some genes that are most similar to those of Bacteria and others to Archaea.
    CAS PubMed Google Scholar
  63. Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA 95, 6239–6244 (1998)
    ADS CAS PubMed PubMed Central Google Scholar
  64. Esser, C. et al. A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. 21, 1643–1660 (2004)
    CAS PubMed Google Scholar
  65. Alsmark, C. et al. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biol. 14, R19 (2013)
    PubMed PubMed Central Google Scholar
  66. Cotton, J. A. & McInerney, J. O. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. Proc. Natl Acad. Sci. USA 107, 17252–17255 (2010)
    ADS CAS PubMed PubMed Central Google Scholar
  67. Dagan, T. & Martin, W. The tree of one percent. Genome Biol. 7, 118 (2006)
    PubMed PubMed Central Google Scholar
  68. Doolittle, W. F. & Bapteste, E. Pattern pluralism and the Tree of Life hypothesis. Proc. Natl Acad. Sci. USA 104, 2043–2049 (2007)
    ADS CAS PubMed PubMed Central Google Scholar
  69. Williams, D. et al. A rooted net of life. Biol. Direct 6, 45 (2011)
    PubMed PubMed Central Google Scholar
  70. Creevey, C. J., Doerks, T., Fitzpatrick, D. A., Raes, J. & Bork, P. Universally distributed single-copy genes indicate a constant rate of horizontal transfer. PLoS ONE 6, e22099 (2011)
    ADS CAS PubMed PubMed Central Google Scholar
  71. Boussau, B. et al. Genome-scale coestimation of species and gene trees. Genome Res. 23, 323–330 (2013)
    CAS PubMed PubMed Central Google Scholar
  72. Szollösi, G. J., Boussau, B., Abby, S. S., Tannier, E. & Daubin, V. Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc. Natl Acad. Sci. USA 109, 17513–17518 (2012)
    ADS PubMed PubMed Central Google Scholar
  73. Cohen, O., Gophna, U. & Pupko, T. The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Mol. Biol. Evol. 28, 1481–1489 (2011)
    CAS PubMed Google Scholar
  74. Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96, 3801–3806 (1999)
    ADS CAS PubMed PubMed Central Google Scholar
  75. Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000)
    Google Scholar
  76. Parfrey, L. W., Lahr, D. J., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011)
    ADS CAS PubMed PubMed Central Google Scholar
  77. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999)
    CAS PubMed Google Scholar
  78. Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008)
    ADS CAS PubMed Google Scholar
  79. Fischer, W. W. Biogeochemistry: life before the rise of oxygen. Nature 455, 1051–1052 (2008)
    ADS CAS PubMed Google Scholar
  80. Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006)
    ADS CAS PubMed Google Scholar
  81. Papineau, D., Walker, J. J., Mojzsis, S. J. & Pace, N. R. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. 71, 4822–4832 (2005)
    CAS PubMed PubMed Central Google Scholar
  82. Allwood, A. C. et al. Controls on development and diversity of Early Archean stromatolites. Proc. Natl Acad. Sci. USA 106, 9548–9555 (2009)
    ADS CAS PubMed PubMed Central Google Scholar
  83. Tice, M. M. & Lowe, D. R. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431, 549–552 (2004)
    ADS CAS PubMed Google Scholar
  84. Schopf, J. W. Fossil evidence of Archaean life. Phil. Trans. R. Soc. B 361, 869–885 (2006)
    CAS PubMed PubMed Central Google Scholar
  85. Cavalier-Smith, T. Eukaryotes with no mitochondria. Nature 326, 332–333 (1987)
    ADS CAS PubMed Google Scholar
  86. Cavalier-Smith, T. in Endocytobiology II (eds Schwemmler, W. & Schenk, H.E.A. ) 1027–1034 (De Gruyter, 1983)
    Google Scholar
  87. van der Giezen, M., Tovar, J. & Clark, C. G. Mitochondria-derived organelles in protists and fungi. Int. Rev. Cytol. 244, 175–225 (2005)
    CAS PubMed Google Scholar
  88. Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998)
    ADS CAS PubMed Google Scholar
  89. Horner, D. S., Hirt, R. P., Kilvington, S., Lloyd, D. & Embley, T. M. Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc. R. Soc. Lond. B 263, 1053–1059 (1996)
    ADS CAS Google Scholar
  90. Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010)
    ADS CAS PubMed Google Scholar
  91. Martin, W. & Koonin, E. V. Introns and the origin of nucleus-cytosol compartmentalization. Nature 440, 41–45 (2006)
    ADS CAS PubMed Google Scholar
  92. Lombard, J., Lopez-Garcia, P. & Moreira, D. The early evolution of lipid membranes and the three domains of life. Nature Rev. Microbiol. 10, 507–515 (2012)
    CAS Google Scholar
  93. Pitcher, A. et al. Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments. Appl. Environ. Microbiol. 77, 3468–3477 (2011)
    CAS PubMed PubMed Central Google Scholar
  94. van de Vossenberg, J. L., Driessen, A. J. & Konings, W. N. The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2, 163–170 (1998)
    CAS PubMed Google Scholar
  95. Boucher, Y., Kamekura, M. & Doolittle, W. F. Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol. Microbiol. 52, 515–527 (2004)
    CAS PubMed Google Scholar
  96. Lombard, J., Lopez-Garcia, P. & Moreira, D. An ACP-independent fatty acid synthesis pathway in archaea: implications for the origin of phospholipids. Mol. Biol. Evol. 29, 3261–3265 (2012)
    CAS PubMed Google Scholar
  97. Guldan, H., Matysik, F. M., Bocola, M., Sterner, R. & Babinger, P. Functional assignment of an enzyme that catalyzes the synthesis of an archaea-type ether lipid in bacteria. Angew. Chem. Int. Edn Engl. 50, 8188–8191 (2011)
    CAS Google Scholar
  98. Tan, H. H., Makino, A., Sudesh, K., Greimel, P. & Kobayashi, T. Spectroscopic evidence for the unusual stereochemical configuration of an endosome-specific lipid. Angew. Chem. Int. Edn Engl. 51, 533–535 (2012)
    CAS Google Scholar
  99. Shimada, H. & Yamagishi, A. Stability of heterochiral hybrid membrane made of bacterial _sn_-G3P lipids and archaeal _sn_-G1P lipids. Biochemistry 50, 4114–4120 (2011)Reports the production of stable heterochiral membranes containing a mixture of bacterial- and archaeal-type lipids, demonstrating the feasibility of natural mixed membranes.
    CAS PubMed Google Scholar
  100. Martin, W. & Muller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998)
    ADS CAS PubMed Google Scholar
  101. Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl Acad. Sci. USA 109, 20537–20542 (2012)
    ADS CAS PubMed PubMed Central Google Scholar
  102. Hampl, V. et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc. Natl Acad. Sci. USA 106, 3859–3864 (2009)
    ADS CAS PubMed PubMed Central Google Scholar
  103. Song, S., Liu, L., Edwards, S. V. & Wu, S. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc. Natl Acad. Sci. USA 109, 14942–14947 (2012)
    ADS CAS PubMed PubMed Central Google Scholar
  104. Lindås, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. A unique cell division machinery in the Archaea. Proc. Natl Acad. Sci. USA 105, 18942–18946 (2008)
    ADS PubMed PubMed Central Google Scholar
  105. Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nature Rev. Microbiol. 8, 731–741 (2010)
    CAS Google Scholar
  106. Blombach, F. et al. Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea. Biol. Direct 4, 39 (2009)
    PubMed PubMed Central Google Scholar
  107. Daniels, J. P., Kelly, S., Wickstead, B. & Gull, K. Identification of a crenarchaeal orthologue of Elf1: implications for chromatin and transcription in Archaea. Biol. Direct 4, 24 (2009)
    PubMed PubMed Central Google Scholar
  108. Rivera, M. C. & Lake, J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257, 74–76 (1992)
    ADS CAS PubMed Google Scholar

Download references