αv Integrins as receptors for tumor targeting by circulating ligands (original) (raw)

References

  1. Pauli, B.U., Augustin-Voss, H.G., El-Sabban, M.E., Johnson, R.C., and Hammer, D.A. 1990. Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev. 9: 175–189.
    Article CAS Google Scholar
  2. Zetter, B.R. 1990. The cellular basis of site-specific tumor metastasis. N. Engl. J. Med. 322: 605–612.
    Article CAS Google Scholar
  3. Springer, T.A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301–314.
    Article CAS Google Scholar
  4. Butcher, E.C. and Picker, L.J. 1996. Lymphocyte homing and homeostasis. Science 272: 60–66.
    Article CAS Google Scholar
  5. Goetz, D.J., El-Sabban, M.E., Hammer, D.A., and Pauli, B.U. 1996. Lu-ECAM-1-mediated adhesion of melanoma cells to endothelium under conditions of flow. Int. J. Cancer 65: 192–199.
    Article CAS Google Scholar
  6. Pasqualini, R. and Ruoslahti, E. 1996. Organ targeting in vivo using phage display peptide libraries. Nature 380: 364–366.
    Article CAS Google Scholar
  7. Baillie, C.T., Winslet, M.C., and Bradley, N.J. 1995. Tumour vasculature—a potential therapeutic target. Br. J. Cancer 72: 257–267.
    Article CAS Google Scholar
  8. Burrows, F.J. and Thorpe, P.E. 1994. Vascular targeting—a new approach to the therapy of solid tumors. Pharmacol. Ther. 64: 155–174.
    Article CAS Google Scholar
  9. Buckle, R. 1994. Vascular targeting and the inhibition of angiogenesis. Ann. Oncol. 4(suppl.): 45–50.
    Google Scholar
  10. Mustonen, T. and Alitalo, K. 1995. Endothelial receptor tyrosine kinases involved in angiogenesis. J. Cell Biol. 129: 895–898.
    Article CAS Google Scholar
  11. Lappi, D.A. 1995. Tumor targeting through fibroblast growth factor receptors. Semin. Cancer Biol. 6: 279–288.
    Article CAS Google Scholar
  12. Martiny-Baron, G. and Marme, D. 1995. VEGF-mediated tumor angiogenesis: a new target for cancer therapy. Curr. Opin. Biotechnol. 6: 675–680.
    Article CAS Google Scholar
  13. Rettig, W.J., Garin-Chesa, P., Healey, J.H., Su, S.L., Jaffe, E.A., and Old, L.J. 1992. Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc. Natl. Acad. Sci. USA 89: 10832–10836.
    Article CAS Google Scholar
  14. Brooks, P.C., Clark R.A., and Cheresh, D.A. 1994. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264: 569–571.
    Article CAS Google Scholar
  15. Friedlander, M., Brooks, P.C., Sharffer, R.W., Kincaid, C.M., Varner, J.A., and Cheresh, D.A. 1995. Definition of two angiogenic pathways by distinct αv integrins. Science 270: 1500–1502.
    Article CAS Google Scholar
  16. Brooks, P.C., Montgomery, A.M., Rosenfeld, M., Reisfeld, R.A., Hu, T., Klier, G., et al. 1994. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164.
    Article CAS Google Scholar
  17. Brooks, P.C., Stromblad S., Klemle R., Visscher D., Sarkar F.H., and Cheresh, D.A. 1995. Anti-integrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96: 1815–1822.
    Article CAS Google Scholar
  18. Hammes, H.-P., Brownlee, M., Joonczyk, A., Sutter, A., and Preissner, K.T. 1996. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nature. Med. 5: 529–533.
    Article Google Scholar
  19. Conforti, G., Dominguew-Jimenez, C., Zanetti, A., Gimbrone, M.A., Cremona, O., Marchisio, P.C., et al. 1992. Human endothelial cells express integrin receptors on the luminal aspect of their membrane. Blood 80: 437–446.
    CAS PubMed Google Scholar
  20. Smith, G.P. and Scott, J.K. 1993. Libraries of peptides and proteins displayed in filamentous phage. Methods Enzymol. 21: 228–257.
    Article Google Scholar
  21. Ruoslahti, E. 1996. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12: 697–715.
    Article CAS Google Scholar
  22. Koivunen, E., Wang, B., and Ruoslahti, E. 1995. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Bio/Technology 13: 265–270.
    CAS PubMed Google Scholar
  23. Geter, M.R., Trigg, M.E., and Merril, C.R. 1973. Fate of bacteriophage lambda in non-immune germ-free mice. Nature 246: 221–223.
    Article Google Scholar
  24. Shockley, T.R., Lin, K., Nagy, J.A., Tompkins, R.G., Dvorak, H.F., and Yarmush, M.L 1991. Penetration of tumor tissue by antibodies and other immunoproteins. Ann. N.Y. Acad. Sci. 618: 367–382.
    Article CAS Google Scholar
  25. Dvorak, H.F., Nagy, J.A., and Dvorak, A.M. 1991. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells 3: 77–85.
    CAS PubMed Google Scholar
  26. Folkman, J. 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1: 27–31.
    Article CAS Google Scholar
  27. Hanahan, D. and Folkman, J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364.
    Article CAS Google Scholar
  28. Rak, J.W., St. Croix, B.D., and Kerbel, R.S. 1995. Consequences of angiogenesis for tumor progression, metastasis and cancer. Anticancer Drugs 6: 3–18.
    Article CAS Google Scholar
  29. Price, J.E., Polyzos, A., Zhang, R.D., and Daniels, L.M. 1990. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 50: 717–721.
    CAS Google Scholar
  30. Nicolson, G.L., Inoue, T., Van Pelt, C.S., and Cavanaugh, P.G. 1990. Differential expression of a Mr. approximately 90,000 cell surface transferrin receptor-related glycoprotein on murine B16 metastatic melanoma sublines selected for enhanced brain or ovary colonization. Cancer Res. 50: 515–520.
    CAS PubMed Google Scholar
  31. Welch, D.R., Bisi, J.E., Miller, B.E., Conaway, D., Seftor, E.A., Yohem, K.H., et al. 1991. Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int. J. Cancer 47: 227–237.
    Article CAS Google Scholar
  32. Montesano, R., Pepper, M.S., Möhle-Steinlein, U., Risau, W., Wagner, E.F., and Orci, L. 1990. Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62: 435–445.
    Article CAS Google Scholar

Download references