SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress (original) (raw)
References
Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature403, 795–800 (2000). ArticleCAS Google Scholar
Blander, G. & Guarente, L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem.73, 417–435 (2004). ArticleCAS Google Scholar
North, B. J. & Verdin, E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol.5, 224 (2004). Article Google Scholar
Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev.7, 592–604 (1993). ArticleCAS Google Scholar
Gottlieb, S. & Esposito, R. E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell56, 771–776 (1989). ArticleCAS Google Scholar
Haigis, M. C. & Guarente, L. P. Mammalian sirtuins — emerging roles in physiology, aging, and calorie restriction. Genes Dev.20, 2913–2921 (2006). ArticleCAS Google Scholar
Matsushita, N. et al. Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells. Genes Cells10, 321–332 (2005). ArticleCAS Google Scholar
Alcendor, R. R., Kirshenbaum, L. A., Imai, S., Vatner, S. F. & Sadoshima, J. Silent information regulator 2α, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ. Res.95, 971–980 (2004). ArticleCAS Google Scholar
Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science305, 390–392 (2004). ArticleCAS Google Scholar
Nemoto, S., Fergusson, M. M. & Finkel, T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science306, 2105–2108 (2004). ArticleCAS Google Scholar
Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev.13, 2570–2580 (1999). ArticleCAS Google Scholar
Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science289, 2126–2128 (2000). ArticleCAS Google Scholar
Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature410, 227–230 (2001). ArticleCAS Google Scholar
Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell107, 137–148 (2001). ArticleCAS Google Scholar
Langley, E. et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J.21, 2383–2396 (2002). ArticleCAS Google Scholar
Vaziri, H. et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell107, 149–159 (2001). ArticleCAS Google Scholar
Chen, W. Y. et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell123, 437–448 (2005). ArticleCAS Google Scholar
Yeh, E. T., Gong, L. & Kamitani, T. Ubiquitin-like proteins: new wines in new bottles. Gene248, 1–14 (2000). ArticleCAS Google Scholar
Verger, A., Perdomo, J. & Crossley, M. Modification with SUMO. A role in transcriptional regulation. EMBO Rep.4, 137–142 (2003). ArticleCAS Google Scholar
Muller, S., Ledl, A. & Schmidt, D. SUMO: a regulator of gene expression and genome integrity. Oncogene23, 1998–2008 (2004). Article Google Scholar
Manza, L. L. et al. Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem. Res. Toxicol.17, 1706–1715 (2004). ArticleCAS Google Scholar
Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell115, 565–576 (2003). ArticleCAS Google Scholar
Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science303, 2011–2015 (2004). ArticleCAS Google Scholar
Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell116, 551–563 (2004). ArticleCAS Google Scholar
Yang, Y., Hou, H., Haller, E. M., Nicosia, S. V. & Bai, W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J.24, 1021–1032 (2005). ArticleCAS Google Scholar
Moschos, S. J. & Mo, Y. Y. Role of SUMO/Ubc9 in DNA damage repair and tumorigenesis. J. Mol. Histol.37, 309–319 (2006). ArticleCAS Google Scholar
Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature425, 191–196 (2003). ArticleCAS Google Scholar
Cheng, J., Wang, D., Wang, Z. & Yeh, E. T. SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Mol. Cell Biol.24, 6021–6028 (2004). ArticleCAS Google Scholar
Wang, C. et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nature Cell Biol.8, 1025–1031 (2006). ArticleCAS Google Scholar
Cohen, H. Y. et al. Acetylation of the C-terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol. Cell13, 627–638 (2004). ArticleCAS Google Scholar
Chen, L. & Chen, J. MDM2–ARF complex regulates p53 sumoylation. Oncogene22, 5348–5357 (2003). ArticleCAS Google Scholar
Buschmann, T., Lerner, D., Lee, C. G. & Ronai, Z. The Mdm-2 amino terminus is required for Mdm2 binding and SUMO-1 conjugation by the E2 SUMO-1 conjugating enzyme Ubc9. J. Biol. Chem.276, 40389–40395 (2001). ArticleCAS Google Scholar
Wood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature430, 686–689 (2004). ArticleCAS Google Scholar
Heltweg, B. et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res.66, 4368–4377 (2006). ArticleCAS Google Scholar
Chu, F., Chou, P. M., Zheng, X., Mirkin, B. L. & Rebbaa, A. Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1. Cancer Res.65, 10183–10187 (2005). ArticleCAS Google Scholar
Cheng, J., Perkins, N. D. & Yeh, E. T. Differential regulation of c-Jun-dependent transcription by SUMO-specific proteases. J. Biol. Chem.280, 14492–14498 (2005). ArticleCAS Google Scholar
Gong, L., Millas, S., Maul, G. G. & Yeh, E. T. Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem.275, 3355–3359 (2000). ArticleCAS Google Scholar