ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation (original) (raw)

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
    Article CAS Google Scholar
  2. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).
    Article CAS Google Scholar
  3. Yoon, S. & Seger, R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24, 21–44 (2006).
    Article CAS Google Scholar
  4. Kolch, W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nature Rev. Mol. Cell Biol. 6, 827–837 (2005).
    Article CAS Google Scholar
  5. Thompson, N. & Lyons, J. Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr. Opin. Pharmacol. 5, 350–356 (2005).
    Article CAS Google Scholar
  6. Scholl, F. A., Dumesic, P. A. & Khavari, P. A. Effects of active MEK1 expression in vivo. Cancer Lett. 230, 1–5 (2005).
    Article CAS Google Scholar
  7. Weinberg, R. A. Fas oncogenes and the molecular mechanisms of carcinogenesis. Blood 64, 1143–1145 (1984).
    CAS PubMed Google Scholar
  8. Giehl, K. Oncogenic Ras in tumour progression and metastasis. Biol. Chem. 386, 193–205 (2005).
    CAS PubMed Google Scholar
  9. Asada, S. et al. Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal. 19, 519–527 (2007).
    Article CAS Google Scholar
  10. Greer, E. L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).
    Article CAS Google Scholar
  11. Finnberg, N. & El-Deiry, W. S. Activating FOXO3a, NF-kappaB and p53 by targeting IKKs: an effective multi-faceted targeting of the tumor-cell phenotype? Cancer Biol. Ther. 3, 614–616 (2004).
    Article CAS Google Scholar
  12. Burgering, B. M. & Kops, G. J. Cell cycle and death control: long live Forkheads. Trends Biochem. Sci. 27, 352–360 (2002).
    Article CAS Google Scholar
  13. Tran, H., Brunet, A., Griffith, E. C. & Greenberg, M. E. The many forks in FOXO's road. Sci STKE RE5 (2003).
  14. Dijkers, P. F. et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell Biol. 20, 9138–9148 (2000).
    Article CAS Google Scholar
  15. Schmidt, M. et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol. Cell Biol. 22, 7842–7852 (2002).
    Article CAS Google Scholar
  16. Yang, J. Y., Xia, W. & Hu, M. C. Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int. J. Oncol. 29, 643–648 (2006).
    PubMed PubMed Central Google Scholar
  17. Hu, M. C. et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).
    Article CAS Google Scholar
  18. Hu, M. C. & Hung, M. C. Role of IkappaB kinase in tumorigenesis. Future Oncol. 1, 67–78 (2005).
    Article CAS Google Scholar
  19. Potente, M. et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 115, 2382–2392 (2005).
    Article CAS Google Scholar
  20. Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).
    Article CAS Google Scholar
  21. Plas, D. R. & Thompson, C. B. Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J. Biol. Chem. 278, 12361–12366 (2003).
    Article CAS Google Scholar
  22. Bond, G. L., Hu, W. & Levine, A. J. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr. Cancer Drug Targets 5, 3–8 (2005).
    Article CAS Google Scholar
  23. Zhou, B. P. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature Cell Biol. 3, 973–982 (2001).
    Article CAS Google Scholar
  24. Uchida, C. et al. Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J. 24, 160–169 (2005).
    Article CAS Google Scholar
  25. Yang, J. Y. et al. MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol. Cell Biol. 26, 7269–7282 (2006).
    Article CAS Google Scholar
  26. Ries, S. et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321–330 (2000).
    Article CAS Google Scholar
  27. Phelps, M., Phillips, A., Darley, M. & Blaydes, J. P. MEK–ERK signaling controls Hdm2 oncoprotein expression by regulating hdm2 mRNA export to the cytoplasm. J. Biol. Chem. 280, 16651–16658 (2005).
    Article CAS Google Scholar
  28. Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006).
    Article CAS Google Scholar
  29. Ding, Q. et al. Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin. Mol. Cell 19, 159–170 (2005).
    Article CAS Google Scholar
  30. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).
    Article CAS Google Scholar
  31. Honda, R. & Yasuda, H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19, 1473–1476 (2000).
    Article CAS Google Scholar
  32. Honda, R. & Yasuda, H. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18, 22–7 (1999).
    Article CAS Google Scholar
  33. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).
    Article CAS Google Scholar
  34. Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).
    Article CAS Google Scholar
  35. Lin, S. Y. et al. β-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc. Natl Acad. Sci. USA 97, 4262–4266 (2000).
    Article CAS Google Scholar
  36. Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).
    Article CAS Google Scholar
  37. Storz, P., Doppler, H. & Toker, A. Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Mol. Cell Biol. 25, 8520–8530 (2005).
    Article CAS Google Scholar
  38. Terry, D. E., Umstot, E. & Desiderio, D. M. Optimized sample-processing time and peptide recovery for the mass spectrometric analysis of protein digests. J. Am. Soc. Mass Spectrom. 15, 784–794 (2004).
    Article CAS Google Scholar
  39. Lee, D. F. et al. IKKβ suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130, 440–455 (2007).
    Article CAS Google Scholar
  40. Hirosawa, M., Hoshida, M., Ishikawa, M. & Toya, T. MASCOT: multiple alignment system for protein sequences based on three-way dynamic programming. Comput. Appl. Biosci. 9, 161–167 (1993).
    CAS PubMed Google Scholar
  41. Chang, J. Y. et al. The tumor suppression activity of E1A in HER-2/neu-overexpressing breast cancer. Oncogene 14, 561–568 (1997).
    Article CAS Google Scholar

Download references

Acknowledgements

We thank: P. P. Pandolfi, D.-H. Yan, J. Chen, T. Sakai, P. Coffer and A. Toker for providing expression plasmids; G. Lozano for the knockout MEF cells; M. C.-H. Hu for the p-FOXO3a (644) antibodies; Y. Wei, J.-M. Hsu, S. Zhang, J.-F. Lee and C.-T. Chen for technical support; W. Kaelin, M. Van Dyke and D. Sarbasov for critical comments on the manuscript; and J. C. Cheng and the Department of Scientific Publications, M. D. Anderson Cancer Center for editing the manuscript. This work was supported by National Institutes of Health (NIH) grant P01 CA 099031, MDACC SPORE in Breast Cancer CA116199 and The University of Texas M. D. Anderson Cancer Center support grant CA16672, and was partially supported by the National Breast Cancer Foundation, Inc., Patel Memorial Breast Cancer Research Foundation, Breast Cancer Research Foundation grant and Kadoorie Charitable Foundations.

Author information

Authors and Affiliations

  1. Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, 77030, TX, USA
    Jer-Yen Yang, Cong S. Zong, Weiya Xia, Hirohito Yamaguchi, Qingqing Ding, Xiaoming Xie, Jing-Yu Lang, Chun-Ju Chang, Wei-Chien Huang, Hsu-Ping Kuo, Dung-Fang Lee, Xiaoyun Cheng, Dihua Yu & Mien-Chie Hung
  2. Graduate School of Biomedical Sciences, The University of Texas, Houston, 77030, TX, USA
    Jer-Yen Yang, Hsu-Ping Kuo, Dung-Fang Lee, Xiaoyun Cheng, Dihua Yu & Mien-Chie Hung
  3. China Medical University Hospital, Taichung, 404, Taiwan
    Chien-Chen Lai, Long-Yuan Li, Fuu-Jen Tsai, Chang-Hai Tsai & Mien-Chie Hung
  4. Department of Internal Medicine, Division of Infectious Diseases, The University of California, Davis, 95817, CA, USA
    Hsin Huang
  5. Asian University, Taichung, 413, Taiwan
    Long-Yuan Li, Chang-Hai Tsai & Mien-Chie Hung
  6. Department of Pathology and College of Medicine, and Angiogenesis Research Center, National Taiwan University, Taipei, 106, Taiwan
    Huang-Chun Lien
  7. Department of Surgery, College of Medicine, and Angiogenesis Research Center, National Taiwan University, Taipei, 106, Taiwan
    King-Jen Chang
  8. Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
    Chwan-Deng Hsiao
  9. Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, 77030, TX, USA
    Aysegul A. Sahin
  10. Departments of Medicine and Biochemistry, McGill University, Montreal, H3A 1A1, Quebec, Canada
    William J. Muller
  11. Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, 77030, TX, USA
    Gordon B. Mills
  12. Department of Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, 77030, TX, USA
    Gabriel N. Hortobagyi

Authors

  1. Jer-Yen Yang
  2. Cong S. Zong
  3. Weiya Xia
  4. Hirohito Yamaguchi
  5. Qingqing Ding
  6. Xiaoming Xie
  7. Jing-Yu Lang
  8. Chien-Chen Lai
  9. Chun-Ju Chang
  10. Wei-Chien Huang
  11. Hsin Huang
  12. Hsu-Ping Kuo
  13. Dung-Fang Lee
  14. Long-Yuan Li
  15. Huang-Chun Lien
  16. Xiaoyun Cheng
  17. King-Jen Chang
  18. Chwan-Deng Hsiao
  19. Fuu-Jen Tsai
  20. Chang-Hai Tsai
  21. Aysegul A. Sahin
  22. William J. Muller
  23. Gordon B. Mills
  24. Dihua Yu
  25. Gabriel N. Hortobagyi
  26. Mien-Chie Hung

Contributions

J.-Y.Y. and M.-C.H. designed the experiments and wrote the manuscript. M.-C.H. supervised the research. J.-Y.Y. and C.S.Z. performed most of the experiments. W.X. performed the immunohistochemistry staining and contributed to the results shown in Tables 1 and 2. X.X. and J.-Y.L. performed the animal experiments. H.Y., Q.D., C.-J.C., W.-C.W., H.-P.K., D.-F.L., L.-Y.L., H.-C.L. and X.C. assisted with experiments for the revision of the manuscript. C.-C.L., F.-J.T. and C.-H.T were responsible for the LC-MC/MS data. H.H. performed the statistical analysis. All authors contributed to discussions of the manuscript.

Corresponding author

Correspondence toMien-Chie Hung.

Supplementary information

Rights and permissions

About this article

Cite this article

Yang, JY., Zong, C., Xia, W. et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation.Nat Cell Biol 10, 138–148 (2008). https://doi.org/10.1038/ncb1676

Download citation