Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy (original) (raw)
Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell142, 375–386 (2010). ArticleCAS Google Scholar
Schenke-Layland, K. et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells26, 1537–1546 (2008). ArticleCAS Google Scholar
Hanna, J. et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature462, 595–601 (2009). ArticleCAS Google Scholar
Stadtfeld, M., Maherali, N., Breault, D. T. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell2, 230–240 (2008). ArticleCAS Google Scholar
Cai, C. L. et al. T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis. Development132, 2475–2487 (2005). ArticleCAS Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). ArticleCAS Google Scholar
Snyder, A., Fraser, S.T. & Baron, M. H. Bone morphogenetic proteins in vertebrate hematopoietic development. J. Cell Biochem.93, 224–232 (2004). ArticleCAS Google Scholar
Martin-Puig, S., Wang, Z. & Chien, K. R. Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell2, 320–331 (2008).
Snyder, M., Huang, X. Y. & Zhang, J. J. Stat3 directly controls the expression of Tbx5, Nkx2.5, and GATA4 and is essential for cardiomyocyte differentiation of P19CL6 cells. J. Biol. Chem.285, 23639–23646 (2010). ArticleCAS Google Scholar
Cohen, E. D., Tian, Y. & Morrisey, E. E. Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development135, 789–798 (2008). ArticleCAS Google Scholar
Klaus, A. & Birchmeier, W. Developmental signaling in myocardial progenitor cells: a comprehensive view of Bmp- and Wnt/β-catenin signaling. Pediatr. Cardiol.30, 609–616 (2009). Article Google Scholar
Qyang, Y. et al. The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/β-catenin pathway. Cell Stem Cell1, 165–179 (2007). ArticleCAS Google Scholar
Kuzmenkin, A. et al. Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB J.23, 4168–4180 (2009). ArticleCAS Google Scholar
Shah, A. P. et al. Genetic background affects function and intracellular calcium regulation of mouse hearts. Cardiovasc. Res.87, 683–693 (2010). ArticleCAS Google Scholar
Stieber, J. et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc. Natl Acad. Sci. USA100, 15235–15240 (2003). ArticleCAS Google Scholar
Markoulaki, S. et al. Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nat. Biotechnol.27, 169–171 (2009). ArticleCAS Google Scholar
Blelloch, R., Venere, M., Yen, J. & Ramalho-Santos, M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell1, 245–247 (2007). ArticleCAS Google Scholar
Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol.26, 101–106 (2008). ArticleCAS Google Scholar
Wernig, M., Meissner, A., Cassady, J. P. & Jaenisch, R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell2, 10–12 (2008). ArticleCAS Google Scholar
Okada, M., Oka, M. & Yoneda, Y. Effective culture conditions for the induction of pluripotent stem cells. Biochim. Biophys. Acta1800, 956–963 (2010). ArticleCAS Google Scholar
Wernig, M. et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat. Biotechnol.26, 916–924 (2008). ArticleCAS Google Scholar
Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell133, 250–264 (2008). ArticleCAS Google Scholar
Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell138, 722–737 (2009). ArticleCAS Google Scholar
Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell2, 151–159 (2008). ArticleCAS Google Scholar
Stadtfeld, M., Maherali, N., Borkent, M. & Hochedlinger, K. A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat. Methods7, 53–55 (2010). ArticleCAS Google Scholar
Anjos-Afonso, F. & Bonnet, D. Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood109, 1298–1306 (2007). ArticleCAS Google Scholar
Koso, H. et al. SSEA-1 marks regionally restricted immature subpopulations of embryonic retinal progenitor cells that are regulated by the Wnt signaling pathway. Dev. Biol.292, 265–276 (2006). ArticleCAS Google Scholar
Christen, B., Robles, V., Raya, M., Paramonov, I. & Belmonte, J. C. Regeneration and reprogramming compared. BMC Biol.8, 5 (2010). Article Google Scholar
Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell10, 105–116 (2006). ArticleCAS Google Scholar
Hochedlinger, K. & Plath, K. Epigenetic reprogramming and induced pluripotency. Development136, 509–523 (2009). ArticleCAS Google Scholar
Artyomov, M. N., Meissner, A. & Chakraborty, A. K. A model for genetic and epigenetic regulatory networks identifies rare pathways for transcription factor induced pluripotency. PLoS Comput. Biol.6, e1000785 (2010). Article Google Scholar
Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature458, 766–770 (2009). ArticleCAS Google Scholar
Zhou, H. et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell4, 381–384 (2009). ArticleCAS Google Scholar
David, R. et al. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat. Cell Biol.10, 338–345 (2008). ArticleCAS Google Scholar
Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc.2, 3081–3089 (2007). ArticleCAS Google Scholar
Ouyang, K., Wu, C. & Cheng, H. Ca(2+)-induced Ca(2+) release in sensory neurons: low gain amplification confers intrinsic stability. J. Biol. Chem.280, 15898–15902 (2005). ArticleCAS Google Scholar