Lian, I. et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev.24, 1106–1118 (2010). ArticleCASPubMedPubMed Central Google Scholar
Grusche, F. A., Degoutin, J. L., Richardson, H. E. & Harvey, K. F. The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev. Biol.350, 255–266 (2010). ArticlePubMedCAS Google Scholar
Cai, J. et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev.24, 2383–2388 (2010). ArticleCASPubMedPubMed Central Google Scholar
Staley, B. K. & Irvine, K. D. Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr. Biol.20, 1580–1587 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shaw, R. L. et al. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development137, 4147–4158 (2010). ArticleCASPubMedPubMed Central Google Scholar
Karpowicz, P., Perez, J. & Perrimon, N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development137, 4135–4145 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ren, F. et al. Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc. Natl Acad. Sci. USA107, 21064–21069 (2010). ArticleCASPubMedPubMed Central Google Scholar
Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol.17, 2054–2060 (2007). ArticleCASPubMed Google Scholar
Cao, X., Pfaff, S. L. & Gage, F. H. YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev.22, 3320–3334 (2008). ArticleCASPubMedPubMed Central Google Scholar
Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev.9, 534–546 (1995). ArticleCASPubMed Google Scholar
Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development121, 1053–1063 (1995). ArticleCASPubMed Google Scholar
Wu, S., Huang, J., Dong, J. & Pan, D. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell114, 445–456 (2003). ArticleCASPubMed Google Scholar
Udan, R. S., Kango-Singh, M., Nolo, R., Tao, C. & Halder, G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat. Cell Biol.5, 914–920 (2003). ArticleCASPubMed Google Scholar
Pantalacci, S., Tapon, N. & Leopold, P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat. Cell Biol.5, 921–927 (2003). ArticleCASPubMed Google Scholar
Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, Hippo, restricts growth and cell proliferation and promotes apoptosis. Cell114, 457–467 (2003). ArticleCASPubMed Google Scholar
Jia, J., Zhang, W., Wang, B., Trinko, R. & Jiang, J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev.17, 2514–2519 (2003). ArticleCASPubMedPubMed Central Google Scholar
Tapon, N. et al. salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell110, 467–478 (2002). ArticleCASPubMed Google Scholar
Kango-Singh, M. et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development129, 5719–5730 (2002). ArticleCASPubMed Google Scholar
Lai, Z. C. et al. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell120, 675–685 (2005). ArticleCASPubMed Google Scholar
Ribeiro, P. S. et al. Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling. Mol. Cell39, 521–534 (2010). ArticleCASPubMed Google Scholar
Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell122, 421–434 (2005). ArticleCASPubMed Google Scholar
Hamaratoglu, F. et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat. Cell Biol.8, 27–36 (2006). ArticleCASPubMed Google Scholar
Baumgartner, R., Poernbacher, I., Buser, N., Hafen, E. & Stocker, H. The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev. Cell18, 309–316 (2010). ArticleCASPubMed Google Scholar
Genevet, A., Wehr, M. C., Brain, R., Thompson, B. J. & Tapon, N. Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev. Cell18, 300–308 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yu, J. et al. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and expanded. Dev. Cell18, 288–299 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tyler, D. M. & Baker, N. E. Expanded and Fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev. Biol305, 187–201 (2007). ArticleCASPubMedPubMed Central Google Scholar
Willecke, M. et al. The Fat cadherin acts through the Hippo tumor-suppressor pathway to regulate tissue size. Curr. Biol.16, 2090–2100 (2006). ArticleCASPubMed Google Scholar
Silva, E., Tsatskis, Y., Gardano, L., Tapon, N. & McNeill, H. The tumor-suppressor gene Fat controls tissue growth upstream of expanded in the Hippo signaling pathway. Curr. Biol.16, 2081–2089 (2006). ArticleCASPubMed Google Scholar
Cho, E. et al. Delineation of a Fat tumor suppressor pathway. Nat. Genet.38, 1142–1150 (2006). ArticleCASPubMed Google Scholar
Bennett, F. C. & Harvey, K. F. Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr. Biol.16, 2101–2110 (2006). ArticleCASPubMed Google Scholar
Matakatsu, H. & Blair, S. S. Separating the adhesive and signaling functions of the Fat and Dachsous protocadherins. Development133, 2315–2324 (2006). ArticleCASPubMed Google Scholar
Sopko, R. et al. Phosphorylation of the tumor suppressor Fat is regulated by its ligand Dachsous and the kinase discs overgrown. Curr. Biol.19, 1112–1117 (2009). ArticleCASPubMedPubMed Central Google Scholar
Simon, M. A., Xu, A., Ishikawa, H. O. & Irvine, K. D. Modulation of Fat:Dachsous binding by the cadherin domain kinase Four-jointed. Curr Biol20, 811–817 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rogulja, D., Rauskolb, C. & Irvine, K. D. Morphogen control of wing growth through the Fat signaling pathway. Dev. Cell15, 309–321 (2008). ArticleCASPubMedPubMed Central Google Scholar
Willecke, M., Hamaratoglu, F., Sansores-Garcia, L., Tao, C. & Halder, G. Boundaries of Dachsous cadherin activity modulate the Hippo signaling pathway to induce cell proliferation. Proc. Natl Acad. Sci. USA105, 14897–14902 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zecca, M. & Struhl, G. A feed-forward circuit linking wingless, Fat–Dachsous signaling, and the Warts-Hippo pathway to Drosophila wing growth. PLoS Biol.8, e1000386 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Feng, Y. & Irvine, K. D. Fat and expanded act in parallel to regulate growth through warts. Proc. Natl Acad. Sci. USA104, 20362–20367 (2007). ArticleCASPubMedPubMed Central Google Scholar
Das Thakur, M. et al. Ajuba LIM proteins are negative regulators of the Hippo signaling pathway. Curr. Biol.20, 657–662 (2010). ArticleCASPubMed Google Scholar
Chen, C. L. et al. The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc. Natl Acad. Sci. USA107, 15810–15815 (2010). ArticleCASPubMedPubMed Central Google Scholar
Grzeschik, N. A., Parsons, L. M., Allott, M. L., Harvey, K. F. & Richardson, H. E. Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr. Biol.20, 573–581 (2010). ArticleCASPubMed Google Scholar
Ling, C. et al. The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc. Natl Acad. Sci. USA107, 10532–10537 (2010). ArticleCASPubMedPubMed Central Google Scholar
Robinson, B. S., Huang, J., Hong, Y. & Moberg, K. H. Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein expanded. Curr. Biol.20, 582–590 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tao, W. et al. Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nat. Genet.21, 177–181 (1999). ArticleCASPubMed Google Scholar
Graves, J. D. et al. Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J.17, 2224–2234 (1998). ArticleCASPubMedPubMed Central Google Scholar
Callus, B. A., Verhagen, A. M. & Vaux, D. L. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J.273, 4264–4276 (2006). ArticleCASPubMed Google Scholar
Oh, H. J. et al. Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res.66, 2562–2569 (2006). ArticleCASPubMed Google Scholar
Khokhlatchev, A. et al. Identification of a novel Ras-regulated proapoptotic pathway. Curr. Biol.12, 253–265 (2002). ArticleCASPubMed Google Scholar
Polesello, C., Huelsmann, S., Brown, N. H. & Tapon, N. The Drosophila RASSF homolog antagonizes the Hippo pathway. Curr. Biol.16, 2459–2465 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chan, E. H. et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene24, 2076–2086 (2005). ArticleCASPubMed Google Scholar
Praskova, M., Xia, F. & Avruch, J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr. Biol.18, 311–321 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev.21, 2747–2761 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hao, Y., Chun, A., Cheung, K., Rashidi, B. & Yang, X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J. Biol. Chem.283, 5496–5509 (2008). ArticleCASPubMed Google Scholar
Oka, T., Mazack, V. & Sudol, M. Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J. Biol. Chem.283, 27534–27546 (2008). ArticleCASPubMed Google Scholar
Lei, Q. Y. et al. TAZ promotes cell proliferation and epithelial–mesenchymal transition and is inhibited by the Hippo pathway. Mol. Cell Biol.28, 2426–2436 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell125, 1253–1267 (2006). ArticleCASPubMedPubMed Central Google Scholar
Overholtzer, M. et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl Acad. Sci. USA103, 12405–12410 (2006). ArticleCASPubMedPubMed Central Google Scholar
Xu, M. Z. et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer115, 4576–4585 (2009). ArticleCASPubMed Google Scholar
Chan, S. W. et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res.68, 2592–2598 (2008). ArticleCASPubMed Google Scholar
Zhou, Z. et al. TAZ is a novel oncogene in non-small cell lung cancer. Oncogene30, 2181–2186 (2011). ArticleCASPubMed Google Scholar
Zhang, N. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell19, 27–38 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lee, K. P. et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size and liver tumorigenesis. Proc. Natl Acad. Sci. USA107, 8248–8253 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lu, L. et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc. Natl Acad. Sci. USA107, 1437–1442 (2010). ArticleCASPubMedPubMed Central Google Scholar
Song, H. et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc. Natl Acad. Sci. USA107, 1431–1436 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhou, D. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell16, 425–438 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhao, B., Li, L., Tumaneng, K., Wang, C. Y. & Guan, K. L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev.24, 72–85 (2010). ArticleCASPubMedPubMed Central Google Scholar
Oh, H. & Irvine, K. D. In vivo regulation of Yorkie phosphorylation and localization. Development135, 1081–1088 (2008). ArticleCASPubMed Google Scholar
Ren, F., Zhang, L. & Jiang, J. Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Dev. Biol.337, 303–312 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Liu, C. Y. et al. The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TRCP E3 ligase. J. Biol. Chem.285, 37159–37169 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gilbert, M. M., Tipping, M., Veraksa, A. & Moberg, K. H. A screen for conditional growth suppressor genes identifies the Drosophila homolog of HD-PTP as a regulator of the oncoprotein Yorkie. Dev. Cell20, 700–712 (2011). ArticleCASPubMedPubMed Central Google Scholar
Badouel, C. et al. The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev. Cell16, 411–420 (2009). ArticleCASPubMed Google Scholar
Oh, H., Reddy, B. V. & Irvine, K. D. Phosphorylation-independent repression of Yorkie in Fat-Hippo signaling. Dev. Biol.335, 188–197 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhao, B. et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev.25, 51–63 (2001). ArticleCAS Google Scholar
Wang, W., Huang, J. & Chen, J. Angiomotin-like proteins associate with and negatively regulate YAP1. J. Biol. Chem.286, 4364–4370 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Varelas, X. et al. The crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β–SMAD pathway. Dev. Cell19, 831–844 (2010). ArticleCASPubMed Google Scholar
Oka, T. et al. Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem. J.432, 461–472 (2010). ArticleCASPubMed Google Scholar
Remue, E. et al. TAZ interacts with zonula occludens-1 and -2 proteins in a PDZ-1 dependent manner. FEBS Lett.584, 4175–4180 (2010). ArticleCASPubMed Google Scholar
Zhang, L. et al. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev. Cell14, 377–387 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H. et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial–mesenchymal transition. J. Biol. Chem.284, 13355–13362 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wu, S., Liu, Y., Zheng, Y., Dong, J. & Pan, D. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell14, 388–398 (2008). ArticleCASPubMed Google Scholar
Goulev, Y. et al. SCALLOPED interacts with YORKIE, the nuclear effector of the Hippo tumor-suppressor pathway in Drosophila. Curr. Biol.18, 435–441 (2008). ArticleCASPubMed Google Scholar
Kitagawa, M. A Sveinsson's chorioretinal atrophy-associated missense mutation in mouse Tead1 affects its interaction with the co-factors YAP and TAZ. Biochem. Biophys. Res. Commun.361, 1022–1026 (2007). ArticleCASPubMed Google Scholar
Fossdal, R. et al. A novel TEAD1 mutation is the causative allele in Sveinsson's chorioretinal atrophy (helicoid peripapillary chorioretinal degeneration). Hum. Mol. Genet.13, 975–981 (2004). ArticleCASPubMed Google Scholar
Lai, D., Ho, K. C., Hao, Y. & Yang, X. Taxol resistance in breast cancer cells is mediated by the Hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res.71, 2728–2738 (2011). ArticleCASPubMed Google Scholar
Neto-Silva, R. M., de Beco, S. & Johnston, L. A. Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev. Cell19, 507–520 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ziosi, M. et al. dMyc functions downstream of Yorkie to promote the supercompetitive behavior of Hippo pathway mutant cells. PLoS Genet.6, e1001140 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Yagi, R., Chen, L. F., Shigesada, K., Murakami, Y. & Ito, Y. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J.18, 2551–2562 (1999). ArticleCASPubMedPubMed Central Google Scholar
Strano, S. et al. Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J. Biol. Chem.276, 15164–15173 (2001). ArticleCASPubMed Google Scholar
Komuro, A., Nagai, M., Navin, N. E. & Sudol, M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J. Biol. Chem.278, 33334–33341 (2003). ArticleCASPubMed Google Scholar
Omerovic, J. et al. Ligand-regulated association of ErbB-4 to the transcriptional co-activator YAP65 controls transcription at the nuclear level. Exp. Cell Res.294, 469–479 (2004). ArticleCASPubMed Google Scholar
Alarcon, C. et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell139, 757–769 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hong, J. H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science309, 1074–1078 (2005). ArticleCASPubMed Google Scholar
Murakami, M., Nakagawa, M., Olson, E. N. & Nakagawa, O. A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc. Natl Acad. Sci. USA102, 18034–18039 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cui, C. B., Cooper, L. F., Yang, X., Karsenty, G. & Aukhil, I. Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ. Mol. Cell Biol.23, 1004–1013 (2003). ArticleCASPubMedPubMed Central Google Scholar
Park, K. S. et al. TAZ interacts with TTF-1 and regulates expression of surfactant protein-C. J. Biol. Chem.279, 17384–17390 (2004). ArticleCASPubMed Google Scholar
Murakami, M. et al. Transcriptional activity of Pax3 is co-activated by TAZ. Biochem. Biophys. Res. Commun.339, 533–539 (2006). ArticleCASPubMed Google Scholar
Varelas, X. et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol.10, 837–848 (2008). ArticleCASPubMed Google Scholar
Lapi, E. et al. PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol. Cell32, 803–814 (2008). ArticleCASPubMed Google Scholar
Matallanas, D. et al. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol. Cell27, 962–975 (2007). ArticleCASPubMedPubMed Central Google Scholar
Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science332, 458–461 (2011). ArticleCASPubMedPubMed Central Google Scholar
Thompson, B. J. & Cohen, S. M. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell126, 767–774 (2006). ArticleCASPubMed Google Scholar
Nolo, R., Morrison, C. M., Tao, C., Zhang, X. & Halder, G. The bantam microRNA is a target of the Hippo tumor-suppressor pathway. Curr. Biol.16, 1895–1904 (2006). ArticleCASPubMed Google Scholar
Peng, H. W., Slattery, M. & Mann, R. S. Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev.23, 2307–2319 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J. et al. YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat. Cell Biol.11, 1444–1450 (2009). ArticleCASPubMedPubMed Central Google Scholar
Genevet, A. et al. The Hippo pathway regulates apical-domain size independently of its growth-control function. J. Cell Sci.122, 2360–2370 (2009). ArticleCASPubMedPubMed Central Google Scholar
Skouloudaki, K. et al. Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development. Proc. Natl Acad. Sci. USA106, 8579–8584 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhan, L. et al. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell135, 865–878 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hong, Y., Stronach, B., Perrimon, N., Jan, L. Y. & Jan, Y. N. Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature414, 634–638 (2001). ArticleCASPubMed Google Scholar
Grzeschik, N. A., Amin, N., Secombe, J., Brumby, A. M. & Richardson, H. E. Abnormalities in cell proliferation and apico-basal cell polarity are separable in Drosophila lgl mutant clones in the developing eye. Dev. Biol.311, 106–123 (2007). ArticleCASPubMedPubMed Central Google Scholar
Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell16, 398–410 (2009). ArticleCASPubMed Google Scholar
Silvis, M. R. et al. α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci. Signal4, ra33 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Zhang, H., Pasolli, H. A. & Fuchs, E. Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc. Natl Acad. Sci. USA108, 2270–2275 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fernandez, L. A. et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev.23, 2729–2741 (2009). ArticleCAS Google Scholar
Sun, G. & Irvine, K. D. Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev. Biol.350, 139–151 (2011). ArticleCASPubMed Google Scholar
Furuyama, K. et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat. Genet.43, 34–41 (2010). ArticlePubMedCAS Google Scholar